TECHNICAL FISHERY REPORT 88-15

Alaska Department of Fish and Game Division of Commercial Fisheries PO Box 3-2000 Juneau, Alaska 99802

October 1988

Bristol Bay Sockeye Salmon Smolt Studies for 1986

by

Brian G. Bue, Donald L. Bill, Wesley A. Bucher, Stephen M. Fried, Henry J. Yuen, and R. Eric Minard

State of Alaska

Steve Cowper, Governor

The Technical Fishery Report Series was established in 1987, replacing the Technical Data Report Series. The scope of this new series has been broadened to include reports that may contain data analysis, although data oriented reports lacking substantial analysis will continue to be included. The new series maintains an emphasis on timely reporting of recently gathered information, and this may sometimes require use of data subject to minor future adjustments. Reports published in this series are generally interim, annual, or iterative rather than final reports summarizing a completed study or project. They are technically oriented and intended for use primarily by fishery professionals and technically oriented fishing industry representatives. Publications in this series have received several editorial reviews and at least one blind peer review refereed by the division's editor and have been determined to be consistent with the division's publication policies and standards.

BRISTOL BAY SOCKEYE SALMON SMOLT STUDIES FOR 1986

Ву

Brian G. Bue, Donald L. Bill, Wesley A. Bucher, Stephen M. Fried, Henry J. Yuen, and R. Eric Minard

Technical Fishery Report No. 88-15

Alaska Department of Fish and Game Division of Commercial Fisheries Juneau, Alaska

October 1988

AUTHORS

- Brian G. Bue is Region II Bristol Bay Biometrician for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, Ak 99518.
- Donald L. Bill is Region II Naknek-Kvichak Area Management Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 37, King Salmon, Ak 99613.
- Wesley A. Bucher is Region II Togiak Area Management Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, P.O. Box 230, Dillingham, Ak 99576.
- Stephen M. Fried is Region II Bristol Bay Research Project Leader for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, Ak 99518.
- Henry J. Yuen is Region II Lower Cook Inlet Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, 333 Raspberry Road, Anchorage, Ak 99518. He previously served as Region II Bristol Bay Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage, Ak.
- R. Eric Minard is Region II Bristol Bay Area Sportfish Biologist for the Alaska Department of Fish and Game, Division of Sportfish, P.O. Box 230, Dillingham, Ak 99576. He previously served as Region II Bristol Bay Research Biologist for the Alaska Department of Fish and Game, Division of Commercial Fisheries, Dillingham, Ak.

ACKNOWLEDGMENTS

We would like to thank the following Alaska Department of Fish and Game, Division of Commercial Fisheries, employees who worked at the various smolt site during the 1986 season: Fred Tilly, Dan Salmon, Roger Dunbar, Susan McNeil, Steve Thompson, Ken Legg, Greg Snedgren, Mark Fink, Dulce Ben, Roxanne Petersen, Robert Zanella, Mike Wiedmer, Nick Cassara, Blaine Smith, Debbie Hart, Mary Shiffer, Jim Menard, Tom Brookover, Carlos Paez, and Nevette Bowen. These people worked long and irregular hours under difficult, uncomfortable, and at times hazardous conditions. These projects could not have been conducted without their resourcefulness and dedication.

TABLE OF CONTENTS

	<u>Page</u>
LIST OF TABLES	iv
ABSTRACT	x
INTRODUCTION	1
MATERIALS AND METHODS	1
Project Locations	1
Hydroacoustic Equipment	2
Estimating Smolt Numbers	2
Biomass estimate	3 4 5
Climatological Data Collection	6
RESULTS AND DISCUSSION	6
Kvichak River	6
Naknek River	7
Egegik River	8
Ugashik River	9
Wood River	10
Nuyakuk River	11
I TTEDATIDE CITED	10

LIST OF TABLES

<u>Table</u>		Page
1.	Sonar counts recorded from three 14 transducer arrays at the sockeye salmon smolt counting site on the Kvichak River, Bristol Bay, Alaska, 1986	23
2.	Daily number of sockeye salmon smolt migrating seaward in the Kvichak River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	24
3.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Kvichak River, Bristol Bay, Alaska, 1986	25
4.	Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1956-1984 brood years, Kvichak River, Bristol Bay, Alaska	26
5.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1952-1984 brood years, Kvichak River, Bristol Bay, Alaska	28
6.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Kvichak River, Bristol Bay, Alaska, 1986	30
7.	Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Kvichak River, Bristo Bay, Alaska, 1986	
8.	Age composition of total migration, and mean fork length and weight by age class for sockeye salmon smolt, Kvichak River, Bristol Bay, Alaska, 1955-1986	33
9.	Climatological and hydrological observations made at sockeye salmon smolt counting site, Kvichak River, Bristol Bay, Alaska 1986	, 35
10.	Water temperatures at sockeye salmon smolt counting site, Kvichak River, Bristol Bay, Alaska, 1963-1986	36
11.	Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Naknek River, Bristol Bay, Alaska, 1986	37
12.	Daily number of sockeye salmon smolt migrating seaward in the Naknek River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	39

<u>Table</u>	2	<u>Page</u>
13.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Naknek River, Bristol Bay, Alaska, 1986	41
14.	Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1956-1984 brood years, Naknek River, Bristol Bay, Alaska	42
15.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1978-1984 brood years, Naknek River, Bristol Bay, Alaska	43
16.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Naknek River, Bristol Bay, Alaska, 1986	44
17.	Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Naknek River, Bristol Bay, Alaska, 1986	45
18.	Mean fork length and weight of sockeye salmon smolt sampled from the Naknek River, Bristol Bay, Alaska, 1957-1986	47
19.	Climatological and hydrological observations made at sockeye salmon smolt counting site, Naknek River, Bristol Bay, Alaska, 1986	48
20.	Water temperatures at sockeye salmon smolt counting site, Naknek River, Bristol Bay, Alaska, 1967-1986	50
21.	Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Egegik River, Bristol Bay, Alaska, 1986	51
22.	Daily number of sockeye salmon smolt migrating seaward in the Egegik River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	52
23.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Egegik River, Bristol Bay, Alaska, 1986	53
24.	Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1978-1984 brood years. Egegik River, Bristol Bay, Alaska	,

Tab]	<u>Le</u>	<u>Page</u>
25.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1978-1984 brood years, Egegik River, Bristol Bay, Alaska	55
26.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Egegik River, Bristol Bay, Alaska, 1986	56
27.	Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Egegik River, Bristol Bay, Alaska, 1986	57
28.	Mean fork length and weight of sockeye salmon smolt sampled from the Egegik River, Bristol Bay, Alaska, 1939-1986	58
29.	Mean fork length and weight of coho salmon smolt captured in fyke nets, Egegik River, Bristol Bay, Alaska, 1986	59
30.	Climatological and hydrological observations made at sockeye salmon smolt counting site, Egegik River, Bristol Bay, Alaska, 1986	60
31.	Water temperatures at sockeye salmon smolt counting site, Egegik River, Bristol Bay, Alaska, 1981-1986	61
32.	Sonar counts recorded from two 10 transducer arrays at the sockeye salmon smolt counting site on the Ugashik River, Bristol Bay, Alaska, 1986	62
33.	Daily number of sockeye salmon smolt migrating seaward in the Ugashik River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	63
34.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolt, Ugashik River, Bristol Bay, Alaska, 1986	64
35.	Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1979-1984 brood years, Ugashik River, Bristol Bay, Alaska	65
36.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1979-1984 brood years, Ugashik River, Bristol Bay, Alaska	66
37.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Ugashik River, Bristol Bay, Alaska, 1986	67

Table	<u>e</u>	<u>Page</u>
38.	Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Ugashik River, Bristol Bay, Alaska, 1986	68
39.	Mean fork length and weight of sockeye salmon smolt sampled from the Ugashik River, Bristol Bay, Alaska, 1958-1986	69
40.	Climatological and hydrological observations made at sockeye salmon smolt counting site, Ugashik River, Bristol Bay, Alaska 1986	, 70
41.	Water temperatures at sockeye salmon smolt counting site, Ugashik River, Bristol Bay, Alaska, 1983-1986	71
42.	Sonar counts recorded from four 10 transducer arrays at the sockeye salmon smolt counting site on the Wood River, Bristol Bay, Alaska, 1986	72
43.	Percentage of total unexpanded sonar counts recorded over each array, Wood River, Bristol Bay, Alaska, 1975-1986	74
44.	Velocity correction factors used at Wood River, Bristol Bay, Alaska, 1986	75
45.	Daily number of sockeye salmon smolt migrating seaward in the Wood River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	76
46.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Wood River, Bristol Bay, Alaska, 1986	78
47.	Sockeye salmon spawning escapements, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1972-1984 brood years Wood River, Bristol Bay, Alaska	
48.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1972-1984 brood years, Wood River, Bristol Bay, Alaska	81
49.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Wood River, Bristol Bay, Alaska, 1986	82
50.	Age composition of total migration, and mean fork length and weight by age class, for sockeye salmon smolt, Wood River, Bristol Bay, Alaska, 1951-1986	84

<u>Table</u>	<u>3</u>	<u>Page</u>
51.	Estimated infection by the cestode <i>Triaenophorus crassus</i> of Age I and Age II sockeye salmon smolt by 5 day periods, Wood River, Bristol Bay, Alaska, 1986	86
52.	Infection of sockeye salmon smolts by the cestode <i>Triaenophorus crassus</i> , Wood River, Bristol Bay, Alaska, 1978-1986	
53.	Water temperatures and depths, at field camp site, head of Wood River (outlet of Lake Aleknagik), Bristol Bay, Alaska, 1986. A dash (-) indicates missing data	d 88
54.	Water temperatures and depths at field camp site, head of Wood River (outlet of Lake Aleknagik), Bristol Bay, Alaska, 1975-1986	90
55.	Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Nuyakuk River, Bristol Bay, Alaska, 1986	91
56.	Daily number of sockeye salmon smolt migrating seaward in the Nuyakuk River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit	92
57.	Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Nuyakuk River, Bristol Bay, Alaska, 1986	94
58.	Sockeye salmon spawning escapements, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1980-1984 brood years Nuyakuk River, Bristol Bay, Alaska	
59.	Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1979-1984 brood years, Nuyakuk River, Bristol Bay, Alaska	96
60.	Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Nuyakuk River, Bristol Bay, Alaska, 1986	97
61.	Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Nuyakuk River, Bristol Bay, Alaska, 1986	98
62.	Mean fork length and weight by age class, for sockeye salmon smolt, Nuyakuk River, Bristol Bay, Alaska, 1978, 1982-1986	99
63.	Mean fork length and weight of chinook salmon smolt captured in fyke nets, Nuyakuk River, Bristol Bay, Alaska, 1986	100

<u>Table</u>	Climatological and hydrological observations made at sockeye salmon smolting counting site, Nuyakuk River, Bristol Bay,	Page
		101

ABSTRACT

Sockeye salmon (Oncorhynchus nerka) smolt studies were conducted on the Kvichak, Naknek, Egegik, Ugashik, Wood, and Nuyakuk River systems within Bristol Bay, Alaska, during 1986. Estimates of numbers of smolt migrating to sea based upon data obtained from sonar equipment, were 136,733,218 from Kvichak; 41,329,355 from Naknek; 44,197,865 from Egegik; 53,076,253 from Ugashik; 28,064,408 from Wood; and 11,236,164 from Nuyakuk. Fyke net samples indicated that age-I smolt, from the 1984 brood year spawning escapements, were the dominant age class in five out of the six river systems (percent age-I smolt: 61.1% Kvichak; 53.6% Naknek; 71.4% Ugashik; 97.9% Wood; and 98.5% Nuyakuk). Age-II smolt, from the 1983 escapements, were the dominant age class in the Egegik system (68.1%).

KEY WORDS: juvenile sockeye salmon, *Oncorhynchus nerka*, juvenile migration, sonar, Bristol Bay, Kvichak River, Naknek River, Egegik River, Ugashik River, Wood River, Nuyakuk River

INTRODUCTION

Programs to sample and enumerate seaward migrating sockeye salmon smolt (Oncorhynchus nerka) provide data which are used to forecast adult returns and estimate optimal spawning escapement levels. Smolt sampling programs have been conducted on several of the rivers of Bristol Bay since the early Initial studies used fyke nets to estimate smolt numbers [Kvichak River (1956-1974), Naknek River (1956-1977), Ugashik River (1955-1965, 1967-1970, and 1972-1975), and Wood River (1951-1966) (Kerns 1961; Rietze and Spangler 1958; Jaenicke 1968; Pella and Jaenicke 1978; Burgner 1962; Burgner and Koo 1954). Although these programs furnished information on smolt age, size, and relative abundance, the data did not provide accurate estimates of smolt numbers. The feasibility of counting smolt using hydroacoustics was first examined in 1969, on the Kvichak River, by the Alaska Department of Fish and Game (ADF&G) through a contract with the Bendix Corporation (McCurdy and Paulus 1972: Paulus and Parker 1974). first experimental smolt counter underwent several modifications over the years until two different models were built for use on the Wood (Krasnowski 1976) and Kvichak Rivers (Randall 1977) in 1975 and 1976, respectively. These programs were successful and have served as templates for further smolt enumeration studies on other Bristol Bay systems.

Smolt sonar was also tested on the Ugashik River from 1973-1975 using an early Kvichak experimental counter (Schroeder 1974b and 1975; and Sanders 1976) but was discontinued due to budgetary constraints. Consequently, smolt studies on the Naknek, Egegik, Ugashik, and Nuyakuk Rivers were limited to occasional fyke net sampling for age and size data from 1975 to 1982 (Huttunen 1980; Eggers 1984; Minard 1984). An experimental, two-array Kvichak system was tested on the Egegik River during the spring of 1981 (Bue 1982).

Smolt counters with additional modifications were purchased and deployed on the Naknek and Egegik Rivers in 1982 (Huttunen 1984; Bue 1984), and the Ugashik and Nuyakuk Rivers in 1983 (Fried, Yuen, and Bue 1987; Minard and Frederickson 1987).

Objectives of the 1986 Bristol Bay sockeye salmon smolt studies were: 1) to estimate the number of seaward migrating sockeye salmon smolt, 2) to describe smolt migration patterns, 3) to collect age, weight, and length data for smolts, and 4) to record climatological and hydrological parameters which may affect migratory behavior.

MATERIALS AND METHODS

Project Locations

The Kvichak River sonar site was located approximately 5 km (3 miles) below the outlet of Lake Iliamna. Three transducer arrays, the inshore, center, and offshore, were anchored at 22.9, 43.9, and 62.2 m (75, 144, 204 ft), respectively, from the east bank. The Naknek River site was located 13 km (7.8 miles) below the outlet of Naknek Lake. The inshore, center, and

offshore arrays were anchored at 14, 28, and 51 m (46, 92, and 167 ft), respectively, from the east bank of the river. A three-array system was also used at the Egegik River site located 4 km (2.4 miles) below the outlet of Becharof Lake. Inshore, center, and offshore arrays were located 40, 55, and 67 m (130, 180, and 220 ft), respectively, from the south bank. Two arrays were used in the Ugashik River approximately 50 m (164 ft) from the outlet of Lower Ugashik Lake. The inshore and offshore arrays were placed at 16.5 and 24.5 m (54 and 80 ft) from the north bank. The Wood River site was located at the outlet of Lake Aleknagik. Four arrays (I, II, III, and IV) were located at 21, 30, 42, and 54 m (69, 99, 137, and 177 ft), respectively, from the north bank of the river. A three-array system was also used on the Nuyakuk River, located approximately 3.5 km (2.2 mi) from the outlet of Tikchik Lake. Inshore, center, and offshore arrays were placed 27, 41, and 68 m (88.6, 134.5, and 223.1 ft) from the south bank, respectively.

Hydroacoustic Equipment

All hydroacoustic systems used to estimate smolt numbers were built by the Bendix Corporation. Each system was comprised of 3.03 m (10 ft) long transducer arrays, set on the river bottom, which were connected by coaxial cable to a control unit housed on shore in a canvas wall tent. All transducer arrays used on the Naknek, Egegik, Ugashik, Wood, and Nuyakuk Rivers housed 10 upward-facing transducers. The arrays used on the Kvichak River held seven upward-facing transducers and seven downstream-facing transducers. All arrays were retrieved at the end of the season, but attempts were made to place the arrays in the same locations each year.

Each system was factory calibrated to record one count for a specified amount of fish biomass (Kvichak River, 83.0 g; all other projects 41.5 g) passing through each transducer beam during a given time period. The system was designed so the arrays could be ranged independently of each other. allowed the operator to set the counting range as near the surface as A disable switch on each control unit allowed the person monitoring the equipment to manually stop tabulation of known false counts (i.e., counts due to floating debris, ice, entrained air from high winds or The duration of disable time was automatically recorded and rain, etc.). stored by the control unit. Manual settings on the control unit allowed the operator to adjust printing times for accumulated counts (7.5, 15, 30, or 60 minute intervals), transducer pulse rate, and the portion of the water column monitored. The unit also had ports for connecting an oscilloscope so that transducer signals could be visually observed. All smolt counters, with the exception of the Wood River counter, were designed to monitor three arrays of The Wood River unit was designed to handle two arrays. An transducers. additional switching box was added to the Wood River system to allow for manual multiplexing of four arrays.

Estimating smolt numbers

Estimation of smolt numbers was divided into three major steps: (1) hydroacoustic estimation of total fish biomass migrating down stream past the study site, (2) sampling of the fish population to estimate parameters such as species composition, age proportions, weight, and length; and (3) apportionment of fish biomass into numbers of smolt by age and species based on the estimated fish population parameters.

Biomass estimate

Hydroacoustic equipment at all sonar sites were monitored continuously. Each array was ranged as near the rivers surface as possible (usually within 1-2 cm (.4-.8 inches)) in order to detect all smolt in the water column. The river was continuously monitored for sources of false counts such as boats, wind, rain, debris, etc. and the sonar unit was disabled whenever false counts or false count conditions were detected. Known false counts were subtracted from the hourly totals and linear interpolation was used to estimate counts missed while the sonar was disabled.

Since smolt were assumed to migrate passively with the river current, signal pulse rate of the smolt counter was set to correspond with the river velocity measured over one of the arrays (referred to as the index array). A velocity correction factor was then calculated for each of the remaining arrays:

$$vcf_{i} = \frac{v_{i}}{v_{index}} \qquad ; \tag{1}$$

 vcf_i is the velocity correction factor for array i; v_i the velocity over array i; and v_{index} the velocity over the index array.

Using these correction factors, adjustments for differences in river velocity were made to daily counts for each array:

$$ac_{i,z} = c_{i,z} \cdot vcf_{i} ; \qquad (2)$$

 $ac_{i,z}$ are the adjusted counts for array i on day z; and $c_{i,z}$ the counts for array i on day z.

Counts for each array were actual total counts for all systems but Wood. Four arrays were used at the Wood River site, although the counter was designed to monitor only two. Array I was considered the index array and was continuously monitored. The other three arrays were systematically monitored for 15-min periods. Consequently, the counts for array I were known, while counts for arrays II, III, and IV were estimated:

$$\hat{h}c_{i,z,k} = \sum_{l=1}^{p} (pc_{i,z,k,l} \bullet \frac{4}{p}) , \text{ and}$$
(3)

$$\hat{c}_{i,z} = \sum_{l=1}^{24} \hat{h} c_{i,z,k} ; \qquad (4)$$

 $\hat{h}c_{i,z,k}$ are estimated counts for array i, day z, and hour k; $pc_{i,z,k,1}$ the period sonar count for array i, day z, hour k, and counting period l; and p the number of 15 minute periods that array i was monitored during hour k and day z. If an array was not monitored within the hour, the count was linearly interpolated using the estimated count from the previous hour before and the following hour.

Estimated $\hat{c}_{i,z}$ for Wood River is then substituted into equation 2. The width of river monitored by each array depended on array length (3.03 m), water depth over the array, and transducer signal beam width:

$$1_{i,z} = 3.03 + 2 \left(d_{i,z} \cdot \tan \frac{bw}{2} \right) ;$$
 (5)

 $l_{i,z}$ is the width of river monitored by array i on day z; $d_{i,z}$ the water depth over array i on day z; and bw the transducer beam width, in degrees (18 degrees for Kvichak transducers; 9 degrees for transducers at all other rivers).

Sonar arrays were placed perpendicular to the river current at selected intervals across the river. Distances from each array to a reference location on one of the river banks were measured with a marked length of line, and the most inshore and most offshore points of smolt passage were determined with a separate hydroacoustics system consisting of a single sidefacing transducer and a control unit. At sites where three arrays were used, distances between the following locations were calculated: (1) inshore limit of smolt passage to first array (D_1) ; (2) first to second array (D_2) ; (3) second to third array (D_3) ; (4) third array to offshore limit of smolt passage (D_4) .

Given these distances and measures of fish biomass at points along the river bottom (ac_{iz} for each array and the inshore and offshore limits of smolt passage), the biomass of fish passing the counting site was estimated as follows:

$$\hat{B}_{z} = \frac{1}{2} D_{1} \cdot \frac{ac_{1,z}}{l_{1,z}} + \sum_{i=1}^{na-1} \frac{1}{2} D_{i} \left(\frac{ac_{i,z}}{l_{i,z}} + \frac{ac_{i+1,z}}{l_{i+1,z}} \right) + \frac{1}{2} D_{na+1} \left(\frac{ac_{na,z}}{l_{na,z}} \right) ; \qquad (6)$$

 $\hat{\textbf{B}}_{\textbf{z}}$ is the estimated biomass on day z; $\textbf{D}_{\textbf{i}}$ the distance for interval i; and na the number of transducer arrays used.

Smolt Sampling

Fyke nets were fished on each river to collect age, weight in grams, and fork length in millimeters from smolt migrating past each counting site. Attempts were made to collect 400 smolt each day so that age composition could be estimated, based on sampling for binomial proportions, with a precision of 0.05 and a probability of Type I error of 0.05 (Cochran 1977). If a daily sample of 400 smolt was not obtained, samples were combined with those from subsequent days until a total of 400 smolt were obtained. Since great differences in age composition have been found among different samples of smolt collected during the same day, the daily sample of 400 smolt was obtained from four different fyke net catches throughout each day.

To reduce the time and cost for data collection, age, weight, and length data were obtained from 100 smolt each day, while age and weight were estimated for the remaining 300 smolt, which were measured only for length. Weightlength relationships were calculated for each age group using paired weightlength data from smolt sampled for all three parameters (Ricker 1975):

$$W_{j} = a \cdot L_{j}^{b} \quad ; \tag{7}$$

 \textbf{W}_{j} is the weight of an age j smolt; and \textbf{L}_{j} the measured fork length of an age j smolt.

Smolt sampled for length only were assigned an age based on a discriminant function developed by D.M. Eggers (Alaska Department of Fish and Game, unpublished data) and a weight based on the appropriate age specific weightlength relationship.

Due to the variability of age composition estimates among subsamples taken the same day, daily mean weight and age proportions were estimated as the mean of subsampled values:

$$\overset{m}{\underset{k=1}{\sum}} \left\{ \begin{array}{c} \sum w_k \\ \hline n_k \end{array} \right\}$$

$$\mathring{W} = \frac{1}{m} ; \qquad (8)$$

W is the estimated mean weight of smolt during a sample period; m the number of subsamples collected during a sampling period; w_k the observed weights from subsample k; and n_k the number of observations in subsample k; and

$$\hat{P}_{j} = \frac{\sum_{k=1}^{m} \left\{ \frac{n_{j,k}}{n_{k}} \right\}}{m} ;$$
(9)

 \hat{P}_j is the estimated proportion of age j during a sample period; and $n_{j,k}$ the number of observations of age j in subsample k.

Smolt Estimate

Numbers of smolt were estimated by combining biomass estimates with data on smolt population parameters. Mean weight of smolt was used to convert estimates of biomass per count into estimates of smolt per count:

$$\hat{SPC} = \frac{BPC}{\hat{w}} \qquad ; \tag{10}$$

SPC is the estimated number of smolt per sonar count; and BPC the biomass per count.

The estimated number of smolt was the product of smolt per count and estimated biomass:

$$\hat{N}_{z} = \hat{B}_{z} \cdot \hat{SPC} ; \qquad (11)$$

 \hat{N}_z is the estimated number of smolt in population on day z.

The estimated number of smolt were then apportioned by age class:

$$\hat{\mathbf{N}}_{\mathbf{j},\mathbf{z}} = \hat{\mathbf{N}}_{\mathbf{z}} \cdot \hat{\mathbf{P}}_{\mathbf{j}} \quad ; \tag{12}$$

 $\hat{N}_{i,\,z}$ is the estimated number of smolt of age j on day z.

Finally, daily estimates of smolt numbers were summed to provide season totals:

$$\hat{N}_{tot} = \Sigma \hat{N}_{z}$$
; (13)

 \hat{N}_{Ntot} is the estimated total number of smolt which passed site during season; and

$$\hat{N}_{j,tot} = \sum \hat{N}_{j,z} ; \qquad (14)$$

 $N_{\rm j,tot}$ is the estimated number of smolt of age j which passed the sonar site during the season.

Climatological Data Collection

A small weather station was maintained at each counting site. Observations on sky conditions, wind direction, wind velocity, daily precipitation, air temperature, and water temperature were recorded at 0800 and 2000 hours daily.

RESULTS AND DISCUSSION

Kvichak River

A total of 2,220,754 sonar counts were recorded during the season (Table 1). Forty-four percent of the counts were recorded over the offshore array. There were intermittent high wind problems from 2 June through 4 June and again during the last day and a half of the project. Some interpolation was necessary for missed fishing time. Linear interpolations were made for these days using counts from 1 and 5 June. Peak day of migration was 6 June when over 58,000,000 smolt migrated seaward (43% of the total run). No side scan sonar data was collected this season. Thus smolt distribution across the counting transect was assumed to be the same as in 1985, with the majority of smolt migrating between 6.4 and 73.3 m (21 and 247 ft, respectively) of the south bank. The velocity correction factors remained constant throughout the

season, 0.88, 1.00, and 1.02 for the inshore, center, and offshore arrays, respectively.

Estimated total number of smolt was 136,733,218 (Table 2). Age class composition of the smolt population was estimated to be 61% age-I (1984 brood year) and 39% age-II (1983 brood year). The percentage of age-II smolt was highest early in the project and decreased as the migration continued. Consequently, the estimated smolt per count increased between the beginning and end of counting (Table 3).

Total smolt production from the 1983 brood year spawning escapement of 3,569,982 sockeye salmon was 21.5 smolt per spawner with 23,590,443 age-I smolt migrating to sea in 1985 and 53,260,639 age-II smolt migrating in 1986 (Table 4). Average marine survival for smolt produced by the 1968-82 brood years has been approximately 9.8% for age-I smolt and about 13.2% for age-II smolt (Table 5).

A total of 1,983 smolt were sampled to obtain data on age, length, and weight (Table 6). Mean lengths of age-I and age-II smolt were 88 mm (3.5 in) and 107 mm (4.2 in) respectively. Mean weights of age-I and age-II smolt were 5.5 g (0.19 oz) and 10.4 g (0.37 oz) respectively. An additional 3,892 smolt were sampled for length only (Table 7). Average lengths for both age-I and age-II smolt were slightly less (nonstatistical comparison = NSC) than the long term averages of 88 mm (3.5 in) and 109 mm (4.3 in) respectively (Table 8). Average weights were also slightly smaller than the long term averages of 5.9 g (0.21 oz) and 10.7 g (0.38 oz) respectively.

River and weather conditions were recorded at the sonar site from 18 May through 12 June (Table 9). Ice was not a problem in 1986 although several days of high winds and entrained air precluded counting on several occasions. Mean water temperature during the project was $6.9~^{\circ}\text{C}$ (range 3.5-8.8 degrees centigrade. The water temperature during the peak of the outmigration from 5 June to 7 June was $7.0\text{-}7.3~^{\circ}\text{C}$. These figures are compared in Table 10.

Naknek River

A total of 1,429,172 sonar counts were tabulated during the 1986 season, 23 May through 27 June (Table 11). Twelve percent of these counts were registered over the inshore array, with 72 and 16% passing over the center and offshore arrays, respectively. Counts over the offshore array were adjusted to compensate for a malfunctioning transducer beginning on 25 May [actual offshore count was multiplied by 1.111 (10 transducers / 9 operational transducers)]. No side scan data was collected this year. Thus smolt distribution across the counting transect was assumed to be the same as in 1985, with the majority of smolt migrating between the east bank and 80 m (262 ft) offshore.

Although river velocities varied widely, velocity correction factors remained the same throughout the project. The velocities over each array were standardized to the inshore array resulting in correction factors of 1.00, 1.44, and 0.87 for the inshore, center and offshore arrays, respectively.

The final sockeye salmon smolt population estimate was 41,329,355 (Table 12). Age composition was 53.6% age-I (1984 Brood year), 46.3% age-II (1983 brood year), and 0.1% age-III (1982 brood year). Age-II and III smolt migrated to sea earlier in the season than age-I smolt. Consequently, numbers of smolt per sonar count increased as the season progressed (range, 2.7 to 4.4 smolt per count) (Tables 12 and 13). Total smolt production from the 1982 brood year was 39.4 smolt per spawner. This was slightly less than estimated for the 1980 and 1981 brood years, 50.2 and 47.7, respectively (Table 14). Estimates of marine survival are still unavailable for the Naknek River due to the small number of years that data has been collected (Table 15).

A total of 2,338 sockeye salmon smolt were sampled for age, weight, and length (AWL) information (Table 16). Mean weights of age-I, II, and III smolt were 9.9, 14.9, and 21.8 g respectively. Mean lengths of age-I, II, and III smolt were 99, 116, and 134 mm, respectively. An additional 8,805 smolt lengths were collected to supplement the age, weight and length sampling. Postseason, the AWL samples were grouped into three groups, those collected through 30 May, those collected form 1 June through 12 June, and those collected after 12 June. An age discriminator based on length was estimated for age-I and II smolts within each group. These discriminators and weight-length relations were used to estimate ages and weights for length samples (Table 17). Average size of all three age classes was smaller (NSC) than historically observed (Table 18).

Weather and river conditions were recorded at the sonar site during 23 May through 28 June (Table 19). Mean air and water temperature during this period was $10.0~^{\circ}\text{C}$ (range -2.2 to $21.0~^{\circ}\text{C}$) and $10.4~^{\circ}\text{C}$ (range 8.5 to $13.0~^{\circ}\text{C}$), respectively. Mean water temperature was similar to what has been historically observed for the past 13 seasons (10.4 vs $10.9~^{\circ}\text{C}$) (Table 20).

Egegik River

A total of 3,605,614 sonar counts were tabulated from 18 May through 11 June, 1986 (Table 21). The counts were distributed at 56, 27, and 17% over the inshore, center, and offshore arrays, respectively. No side scan sonar data was collected this season; consequently, lateral smolt distribution data collected in 1985 was used [12.2 (40 ft) and 85.3 m (278 ft) from the west bank at the counting site was considered the inshore and offshore limits, respectively].

River velocity was monitored continuously using a Marsh-McBirney current meter anchored directly behind the center array. The smolt counter was adjusted to account for changes in river velocity. River velocity ranged from 0.49 to 0.61 meters per second over the center array. Velocity correction factors between arrays were checked twice; 0.78, 1.00, and 0.96 for the inshore, center, and offshore arrays, respectively, on 19 May, and 0.86, 1.00, and 0.97 for the inshore, center, and offshore arrays, respectively, on 7 June.

The final estimate of seaward migrating sockeye salmon smolt was 44,197,865 (Table 22). Age composition was estimated at 32.0% age-I (1984 brood year), 68.0% age-II (1983 brood year), and < 0.01% age-III (1982 brood year). The

percentage of age-II smolt was highest early in the project and decreased as the migration continued. Consequently, the estimated smolt per count increased between the beginning and end of counting (Table 23). Coho salmon smolt were captured in fyke net samples, but no estimate of coho salmon numbers was made.

Total smolt production from the 1982 brood year was 27.7 smolt per spawner which was less than the 62.4 and 49.7 smolt per spawner estimated for the 1980 and 1981 brood years, respectively (Table 24). Average marine survival for smolt produced by the 1978-1982 brood years has been approximately 30.3% for age-I smolt and 33.0% for age-II smolt (Table 25).

Table 26 presents data from 1,120 sockeye salmon smolt sampled for age, weight, and length. Seasonal mean weights were 9.0 g (0.32 oz), 15.7 g (0.55 oz), and 22.6 g (0.80 oz) for the age-I, II, and III groups, respectively. Mean lengths were 101 mm (4.0 in), 122 mm (4.8 in), and 140 mm (5.5 in) for ages-I, II, and III, respectively. An additional 3,892 smolt lengths were collected to supplement the age, weight and length sampling. Postseason, the AWL samples were grouped into two groups, those collected through 1 June and those collected after 1 June. An age discriminator based on length was estimated for age-I and II smolts within each group. These discriminators and length-weight relations were used to estimate ages and weights for the Age-I sockeye salmon smolt were smaller (NSC) length samples (Table 27). than the historical average, while both ages II and III were larger (NSC) (Table 28). The coho salmon smolt sampled were predominantly age-II (Table 29).

Weather and river conditions were recorded at the sonar site during 19 May through 12 June (Table 30). Shore ice was present near the western shore of Lake Becharof and ice fragments were floating past the sonar site when observations were begun on 19 May. Ice was present until 25 May, although no difficulty in sampling or sonar operations was attributed to ice. Mean air and water temperature during the project was 7.2 °C (range 0 to 12 °C) and 4.5 °C (range 2.2 to 7.5 °C), respectively. Mean water temperature was higher than the 1981-1985 average (Table 31).

Ugashik River

A total of 4,829,091 sonar counts were tabulated between 21 May and 13 June at the Ugashik site (Table 32). Forty and 60% of the counts were recorded over the inshore and offshore arrays, respectively. Side scan sonar data indicated that the majority of smolt passed between 7.0 and 26.2 meters of the north bank.

River velocity changed slightly during the project. The observed velocities on 22 May were 1.25 m/sec over the inshore array and 1.38 m/sec over the offshore array (4.10 and 4.53 ft/sec, respectively). The velocities were corrected to the inshore array; consequently, the velocity correction factors were 1.00 and 1.10 for the inshore and offshore arrays. The velocities recorded on 4 June were 1.50 and 1.33 m/sec (4.93 and 4.37 ft/sec) for the inshore and offshore arrays, respectively. The correction factors of 1.00, and 0.89 were used for the remainder of the season.

The final estimate of seaward migrating sockeye salmon smolt was 53,076,253 (Table 33). Estimated age composition was 71.4 % age-I (1984 brood year) and 28.6% age-II (1983 brood year). No age-III smolt were observed this season. Age-I smolt were the predominate age group throughout the project. Age-II smolt were in greatest abundance during the middle of the season. The estimated number of smolt per sonar count is summarized in Table 34. Total smolt production from the 1982 brood year was 83.7 smolt per spawner (Table 35). This is similar to the production (85.9) calculated for the 1981 brood year. Average marine survival was not calculated due to the small number of years from which data has been collected (Table 36).

A total of 1,555 sockeye salmon smolt were sampled for age, weight, and length information (Table 37). The mean weight of age-I and age-II smolts was 5.8 g (0.20 oz) and 10.9 g (0.38 oz), respectively. Mean length was 87 mm (3.4 in) and 114 mm (4.0 in) for the age-I and age-II smolts, respectively. An additional 4,257 smolt were sampled for length to supplement the age, weight, and length sampling. Postseason, all AWLs were pooled into a single group to estimate weight-length relationships for both age groups and to estimate the age discriminator based on length (Table 38). Age-I smolt were smaller (NSC) than historically observed while age-II smolt were slightly larger (NSC) (Table 39). No age-III or coho salmon smolt were observed in the samples.

Climatological and hydrological observations were made at the sonar site from 20 May through 14 June (Table 40). Average air temperature for the time period was 7.1 $^{\circ}$ C (range 0 to 16 $^{\circ}$ C) with an average water temperature of 5.6 $^{\circ}$ C (range 2 to 7 $^{\circ}$ C). Average water temperature was slightly lower than observed for 1983-1985 (6.0 $^{\circ}$ C) (Table 41).

Wood River

A total of 961,541 sonar counts were tabulated during the 1986 season, 27 May through 15 July (Table 42). Twenty-six percent of these counts were registered over the inshore array, with 36, 21, and 17% passing over the center and offshore arrays, respectively. This pattern was similar to that recorded in past years (Table 43).

No side scan data was collected this year. However lateral smolt distribution across the counting transect was assumed to be a function of river width (and depth) which was measured and recorded every 5 days, at a time when the river was not influenced by tide. Based on the average of these measurements, smolt distribution was assumed to have inshore and offshore limits of 1.5 and 95 m (4.9 and 311.6 ft, respectively) from the north bank, respectively.

The river velocity was monitored continuously using a Marsh-McBirney current meter anchored directly behind the inshore array. Velocity setting on the smolt counter was adjusted at 15-minute intervals to reflect that measured by the current meter. River velocity ranged from 1.10 to 1.58 m/sec over the inshore array. The velocity correction factors used for the remaining three arrays are presented in Table 44.

The final sockeye salmon smolt estimate was 28,064,408 (Table 45). Age composition was 97.9% age-I (1984 brood year) and 2.1% age-II (1983 brood year). The estimated number of smolt per sonar count is summarized in Table 46. Total smolt production from the 1983 brood year was 23.9 smolt per spawner. This was slightly less (NSC) than that estimated for the 1982 brood year (27.6) but higher than the 17.1 estimated in 1981 (Table 47). Smolt survival has been calculated completely for the 1973-80 brood years, and partially for the 1981 and 1982 brood years. Comparisons of adult returns per smolt (survival) by brood year indicates an increase in returns from the 1981 brood year for both age-I and age-II smolts with future adults returns expected to boost these estimates even higher (Table 48).

A total of 5,003 sockeye salmon smolt were sampled for age, weight, and length information (Table 49). Mean weights of age-I and II smolt were 5.9 g (0.21 oz) and 9.2 g (0.32 oz), respectively. Mean lengths of age-I and II smolt were 87 mm (3.4 in) and 101 mm (4.0 in), respectively. Mean length and weight of age-I smolt was greater (NSC) than the (1951-85) mean [84 mm (3.3 in) and 6.0 g (0.21 oz)]. However, mean length and weight of age-II smolt was less than the long-term mean [100 mm (3.9 in) and 8.5 g (0.30 oz)] (Table 50). Infection by $Triaenophorus\ crassus\ was\ greater\ for age-II\ smolt\ (45.6%)\ than for age-I smolt\ (40.8%)\ (NSC)\ (Table 51). The incidence of <math>T.\ crassus\ has\ greatly\ increased\ since\ 1983\ (NSC)\ (Table 52).$

Weather and river conditions were recorded at the sonar site during 24 May through 15 July (Table 53). The mean water temperature during this period was 6.1 °C (range 3.0 to 10.5 °C). Although this was 2.3 °C colder than the historic (1975-85) mean (8.4 °C), it should be noted that the project normally is operated until the first week in August. The shorter season in 1986 may account for the cooler (mean) water temperature since higher temperatures are usually recorded in the latter part of the season (Table 54).

Nuyakuk River

A total of 164,940 sonar counts were tabulated from 25 May through 27 June, 1986 (Table 55). The counts were distributed at 30, 38, and 32% over the inshore, center, and offshore arrays, respectively. Side scan sonar data indicated that the majority of smolt passed within 12.2 and 92.7 m (40.0 and 304 ft) from the south bank.

River velocity over the inshore array was measured daily at 1200 hours. The smolt counter was adjusted to account for changes in river velocity over the inshore array. River velocity ranged from 0.34 to 1.31 m/sec (1.12 to 4.30 ft/sec) over the inshore array. Velocity correction factors between arrays were checked weekly.

The final estimate of seaward migrating sockeye salmon smolt was 11,236,164 (Table 56). Age composition was estimated at 98.5% age-I (1984 brood year) and 1.5% age-II (1983 brood year). The estimated number of smolt per count remained relatively constant throughout the season (Table 57). Chinook salmon smolt were collected in fyke net samples but no estimate of chinook numbers was made.

Total smolt production from the 1983 brood year (71.4 smolt per spawner) was more than twice that previously observed (34.7 smolt per spawner from the 1981 brood year) (Table 58). Marine survival was not calculated due to the small number of years from which data is available (Table 59).

Table 60 presents data from 1,840 sockeye salmon smolt sampled for age, weight, and length (Table 60). Seasonal mean weights were 4.7 g (0.17 oz), and 6.3 g (0.22 oz) for age-I and II smolt, respectively. Mean lengths were 81 mm (3.2 in) for age-I and 91 mm (3.6 in) for age-II smolt. An additional 1,922 smolt lengths were collected to supplement the age, weight and length sampling. Postseason, the AWL samples were grouped into one group. An age discriminator based on length and weight-length relationships were estimated for age-I and II smolts. This discriminator and weight-length relationships were used to estimate ages and weights for the length samples (Table 61). Age-I sockeye salmon smolt were larger then the historical average (NSC), while age-II were similar (Table 62). The chinook salmon smolt sampled were predominantly age-I (Table 63).

Weather and river conditions were recorded at the sonar site during 25 May through 27 June (Table 64). Nuyakuk Lake was covered with ice when the sonar project began, but melted in place during the first two weeks of operations. Mean air and water temperature during the project was $10.9\,^{\circ}\text{C}$ (range 5 to $31\,^{\circ}\text{C}$) and $6.8\,^{\circ}\text{C}$ (range $4.5\,^{\circ}$ to $12.0\,^{\circ}\text{C}$), respectively.

LITERATURE CITED

- Bergstrom, D.J., and H.J. Yuen. 1981. 1980 Kvichak River sockeye salmon smolt studies. Pages 1-15 in C.P. Meacham, editor. 1980 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 63, Juneau.
- Bill, D.L. 1975. 1974 Naknek River sockeye salmon smolt studies. Pages 14-23 in P. Krasnowski, editor. 1974 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 20, Juneau.
- Bill, D.L. 1976. 1975 Naknek River sockeye salmon smolt studies. Pages 10-19 in P. Krasnowski, editor. 1975 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 25, Juneau.
- Bill, D.L. 1977. 1976 Naknek River sockeye salmon smolt studies. Pages 14-23 in N. Newcome, editor. 1976 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 33, Juneau.
- Bill, D. 1984. 1982 Kvichak River sockeye salmon smolt studies. Pages 2-13 in D.M. Eggers and H.J. Yuen, editors. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.
- Bill, D. 1986. 1984 Kvichak River sockeye salmon smolt studies. Pages 1-17 in B.G. Bue, editor. 1984 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 182, Juneau.
- Bill, D., S.M. Fried, and H.J. Yuen. 1987. 1983 Kvichak River sockeye salmon smolt studies. Pages 1-35 in B.G. Bue and S.M. Fried, editors. 1983 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 207, Juneau.
- Biwer, D.A. 1972. 1970 Naknek River sockeye salmon smolt studies. Pages 24-31 in P.A. Russell, editor. 1970 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 4, Juneau.
- Bue, B.G. 1982. 1981 Egegik River sockeye salmon smolt studies. Pages 15-27 in D.C. Huttunen, editor. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 73, Juneau.
- Bue, B.G. 1984. 1982 Egegik River sockeye salmon smolt studies. Pages 28-40 in D.M. Eggers and H.J. Yuen, editors. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.

- Bue, B.G. 1986. 1985 Naknek, Egegik, and Ugashik River sockeye salmon smolt studies. Pages 21-66 in B.G. Bue, editor. 1985 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 184, Juneau.
- Bucher, W. 1980. 1979 Wood River sockeye salmon smolt studies. Pages 12-33 in C.P. Meacham, editor. 1979 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 46, Juneau.
- Bucher, W. 1981. 1980 Wood River sockeye salmon smolt studies. Pages 16-33 in C.P. Meacham, editor. 1980 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 63, Juneau.
- Bucher, W. 1982. 1981 Wood River sockeye salmon smolt studies. Pages 28-48 in D.C. Huttunen, editor. 1981 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 73, Juneau.
- Bucher, W. 1984. 1982 Wood River sockeye salmon smolt studies. Pages 47-68 in D.M. Eggers and H.J. Yuen, editor. 1980 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.
- Bucher, W. 1986. 1984 Wood River sockeye salmon smolt studies. Pages 56-78 in B.G. Bue, editor. 1984 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 182, Juneau.
- Bucher, W. 1987. 1983 Wood River sockeye salmon smolt studies. Pages 72-98 in B.G. Bue and S.M. Fried, editors. 1983 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 207, Juneau.
- Burger, R.L. 1962. Studies of red salmon smolts from the Wood River Lakes, Alaska. Pages 251-314 in T.S.Y. Koo, editor. Studies of Alaska Red Salmon. University of Washington Publications in Fisheries, Seattle.
- Burgner, R.L. and S.Y. Koo. 1954. Results of the red salmon seaward migrant enumeration, Wood River Lakes, 1951-1953. University of Washington, Fisheries Research Institute, Circular 62, Seattle.
- Church, W. 1963. Red salmon smolts from the Wood River system, 1961. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 32, Juneau.
- Church, W., and M. Nelson. 1963. Abundance, size and age of red salmon smolts from the Wood River system, 1962. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 33, Juneau.

- Clark, J.H., and T.L. Robertson. 1980. 1978 Wood River sockeye salmon smolt studies. Pages 18-29 in C.P. Meacham, editor. 1978 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 44, Juneau.
- Cochran, W.G. 1977. Sampling Techniques. John Wiley and Sons, New York, New York, USA.
- Eggers, D.M. 1984. 1982 Ugashik River sockeye salmon smolt studies. Pages 41-46 in D.M. Eggers and H.J. Yuen, editors. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.
- Fried, S.M., H.J. Yuen, and B.G. Bue. 1987. 1983 Naknek, Egegik, and Ugashik rivers sockeye salmon smolt studies. Pages 36-71 in B.G. Bue and S.M. Fried, editors. 1983 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 207, Juneau.
- Fried, S.M., H.J. Yuen, and B.G. Bue. 1986. 1984 Naknek, Egegik, and Ugashik Rivers sockeye salmon smolt studies. Pages 18-35 in B.G. Bue, editor. 1984 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 182, Juneau.
- Huttunen, D.C. 1980. 1978 Bristol Bay special sockeye salmon smolt studies. Pages 30-34 in C.P. Meacham, editor. 1978 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 44, Juneau.
- Huttunen, D.C. 1984. 1982 Naknek River sockeye salmon smolt studies. Pages 14-27 in D.G. Eggers and H.J. Yuen, editors. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.
- Jaenicke, H.W. 1963. Ugashik river smolt studies a preliminary report of the 1962 season. United States Department of the Interior, Bureau of Commercial Fisheries, Manuscript Report 63-5, Auke Bay, Alaska.
- Jaenicke, H.W. 1968. Sockeye salmon smolt investigations on the Ugashik River, Alaska, 1958-63. Master of Science Thesis, Humbolt State College, Humbolt, California.
- Kerns, O.E. 1961. Abundance and age of Kvichak River red salmon smolts. Fishery Bulletin 189(61):301-320.
- Krasnowski, P. 1975. 1974 Kvichak River sockeye salmon smolt studies. Pages 1-13 in P. Krasnowski, editor. 1974 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 20, Juneau.

- Krasnowski, P. 1976. 1975 Wood River sockeye salmon smolt studies. Pages 29-51 in P. Krasnowski, editor. 1975 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 25, Juneau.
- Krasnowski, P. 1977. 1976 Wood River sockeye salmon smolt studies. Pages 24-43 in N. Newcome, editor. 1976 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 33, Juneau.
- Marriott, R.A. 1965. 1963 Kvichak River red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 48, Juneau.
- McCurdy, M.L. 1972a. 1971 Naknek River sockeye salmon smolt studies. Pages 29-34 in P.A. Russell and M.L. McCurdy, editors. 1971 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 2, Juneau.
- McCurdy, M.L. 1972b. 1969 Kvichak River sockeye salmon smolt studies. Pages 1-34 in M.L. McCurdy, editor. 1969 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 3, Juneau.
- McCurdy, M.L. 1974a. 1972 Naknek River sockeye salmon smolt studies. Pages 38-48 in K.P. Parker, editor. 1972 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 13, Juneau.
- McCurdy, M.L. 1974b. 1973 Naknek River sockeye salmon smolt studies. Pages 23-32 in K.P. Parker, editor. 1973 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 14, Juneau.
- McCurdy, M.L. and R.D. Paulus. 1972. 1969 Kvichak River sockeye salmon smolt studies. Pages 1-34 in M.L. McCurdy, editor. 1969 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 3, Juneau.
- Minard, R.E. 1984. 1982 Nushagak and Nuyakuk River sockeye salmon smolt studies. Pages 69-72 in D.M. Eggers and H.J. Yuen, editors. 1982 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 103, Juneau.
- Minard, R.E. and J. Brandt. 1986. 1985 Bristol Bay sockeye salmon smolt studies. Pages 92-106 in B.G. Bue, editor. 1985 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 184, Juneau.

- Minard, R.E. and M. Frederickson. 1986. 1984 Nuyakuk River sockeye salmon smolt studies. Pages 79-91 in B.G. Bue, editor. 1984 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 182, Juneau.
- Minard, R.E. and M. Frederickson. 1987. 1983 Nuyakuk River sockeye salmon smolt studies. Pages 97-110 in B.G. Bue and S.M. Fried, editors. 1983 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 207, Juneau.
- Nelson, M.L. 1965. Abundance, size, age and survival of red salmon smolts from the Ugashik Lakes system, Bristol Bay, 1964. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 62, Juneau.
- Nelson, M.L. 1966. Abundance, size, age and survival of red salmon smolts from the Ugashik Lakes system, Bristol Bay, 1965. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 85, Juneau.
- Nelson, M.L. 1969. 1967 Ugashik River red salmon smolt studies. Pages 26-32 in D.M. Stewart, editor. 1967 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 134, Juneau.
- Nelson, M.L. and H.W. Jaenicke. 1965. Abundance, size and age of red salmon smolts from the Ugashik Lakes system, Bristol Bay, 1963. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 49, Juneau.
- Nelson, M.L. 1964. Abundance, size and age of red salmon smolts from the Wood River system, 1963. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 37, Juneau.
- Nelson, M.L. 1965. Abundance, size and age of red salmon smolts from the Wood River system, 1964. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 54, Juneau.
- Nelson, M.L. 1966. Abundance, size and age of red salmon smolts from the Wood River Lakes system, 1965. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 76, Juneau.
- Newcome, N. 1978. 1977 Wood River sockeye salmon studies. Pages 24-34 in H. Yuen, editor. 1977 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 41, Juneau.

- Parker, K.P. 1974a. 1972 Kvichak River sockeye salmon smolt studies. Pages 1-37 in K.P. Parker editor. 1972 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 13, Juneau.
- Parker, K.P. 1974b. 1973 Kvichak River sockeye salmon smolt studies. Pages 1-22 in K.P. Parker, editor. 1973 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 14, Juneau.
- Paulus, R.D. 1972. 1969 Egegik River sockeye salmon smolt studies. Pages 62-65 in M.L. McCurdy, editor. 1969 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 3, Juneau.
- Paulus, R. and M. McCurdy. 1969. 1968 Kvichak River sockeye salmon (Oncorhynchus nerka) smolt studies. Pages 1-45 in M.L. McCurdy, editor. 1968 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 138, Juneau.
- Paulus, R.D. and M.L. McCurdy. 1972. 1970 Kvichak River sockeye salmon smolt studies. Pages 1-13 in P.A. Russell, editor. 1970 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 4, Juneau.
- Paulus, R. and K. Parker. 1974. Kvichak River sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 166, Juneau.
- Pella, J.J. and H.W. Jaenicke. 1978. Some observations on the biology and variations of populations of sockeye salmon of the Naknek and Ugashik Systems of Bristol Bay, Alaska. National Oceanic and Atmospheric Administration, Northwest Fisheries Center, Northwest and Alaska Fisheries Center Processed Report, Seattle, Washington.
- Pennoyer, S. 1966. 1965 Kvichak River red salmon (*Oncorhynchus nerka*) smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 83, Juneau.
- Pennoyer, S. and M.C. Seibel. 1965. 1964 Kvichak River red salmon (*Oncorhynchus nerka*) smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 58, Juneau.
- Pennoyer, S. and D.M. Stewart. 1967. 1966 Kvichak River red salmon (Oncorhynchus nerka) smolt studies. Pages 4-18 in D.M. Stewart, editor. 1966 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 102, Juneau.

- Pennoyer, S. and D.M. Stewart. 1969. 1967 Kvichak River red salmon (Oncorhynchus nerka) smolt studies. Pages 4-17 in D.M. Stewart, editor. 1967 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 134, Juneau.
- Randall, R.C. 1976. 1975 Kvichak River sockeye salmon smolt studies. Pages 1-9 in P. Krasnowski, editor. 1975 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 25, Juneau.
- Randall, R.C. 1977. 1976 Kvichak River sockeye salmon smolt studies. Pages 1-13 in N. Newcome, editor. 1976 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 33, Juneau.
- Randall, R.C. 1978. 1977 Kvichak River sockeye salmon smolt studies. Pages 1-5 in H. Yuen, editor. 1977 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 41, Juneau.
- Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191, Ottawa, Canada.
- Rietze, H.L. and P.J. Spangler. 1958. Operation report for red salmon smolt studies on the Naknek and Egegik Rivers, 1957. United States Fish and Wildlife Service, Bureau of Commercial Fisheries, Western Alaska Salmon Investigations.
- Robertson, A.D. 1967. Naknek River red salmon smolt study, 1966. Pages 34-40 in D.M. Stewart, editor. 1966 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 102, Juneau.
- Russell, P.A. 1972. 1971 Kvichak River sockeye salmon smolt studies. Pages 1-28 in P.A. Russell and M.L. McCurdy, editors. 1971 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 2, Juneau.
- Sanders, G.H. 1976. 1975 Ugashik River sockeye salmon smolt studies. Pages 20-28 in P. Krasnowski, editor. 1975 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 25, Juneau.
- Schroeder, T.R. 1972a. 1969 Ugashik River sockeye salmon smolt studies. Pages 35-45 in M.L. McCurdy, editor. 1969 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 3, Juneau.

- Schroeder, T.R. 1972b. 1970 Ugashik River sockeye salmon smolt studies. Pages 14-23 in P.A. Russell, editor. 1970 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 4, Juneau.
- Schroeder, T.R. 1974a. 1972 Ugashik River sockeye salmon smolt studies. Pages 49-56 in K.P. Parker, editor. 1972 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 13, Juneau.
- Schroeder, T.R. 1974b. 1973 Ugashik River sockeye salmon smolt studies. Pages 33-45 in K.P. Parker, editor. 1973 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 14, Juneau.
- Schroeder, T.R. 1975. 1974 Ugashik River sockeye salmon smolt studies. Pages 24-37 in P. Krasnowski, editor. 1974 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 20, Juneau.
- Siedelman, D.L. 1967. Abundance, size and age of red salmon smolts from the Wood River Lakes system, 1966. Pages 18-33 in D.M. Stewart, editor. 1966 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 102, Juneau.
- Siedelman, D.L. 1969. Abundance, size and age of sockeye salmon smolt from the Ugashik Lakes system, 1968. Pages 46-61 in M.L. McCurdy, editor. 1968 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 138, Juneau.
- Siedelman, D.L. 1972. 1969 Naknek River sockeye salmon smolt studies. Pages 46-61 in M.L. McCurdy, editor. 1969 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 3, Juneau.
- Van Valin, G.R. 1969a. Naknek River red salmon smolt study, 1967. Pages 33-43 in D.M. Stewart, editor. 1967 Bristol Bay red salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 134, Juneau.
- Van Valin, G.R. 1969b. Naknek River sockeye salmon smolt study, 1968. Pages 62-77 in M.L. McCurdy, editor. 1968 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 138, Juneau.
- Yuen, H. 1978. 1977 Naknek River sockeye salmon smolt studies. Pages 12-23 in H. Yuen, editor. 1977 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 41, Juneau.

- Yuen, H.J. 1980a. 1978 Kvichak River sockeye salmon smolt studies. Pages 1-17 in C.P. Meacham, editor. 1978 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 44, Juneau.
- Yuen, H.J. 1980b. 1979 Kvichak River sockeye salmon smolt studies. Pages 1-12 in C.P. Meacham, editor. 1979 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 46, Juneau.
- Yuen, H.J., M.L. Nelson, and R.E. Minard. 1986. 1982 Bristol Bay salmon (Oncorhynchus sp.) a compilation of catch, escapement, and biological data. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 175, Juneau.
- Yuen, H.J. and M.L. Nelson. 1987. 1983 Bristol Bay salmon (Oncorhynchus sp.) a compilation of catch, escapement, and biological data. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 191, Juneau.
- Yuen, H.J., and M. Wise. 1982. 1981 Kvichak River sockeye salmon smolt studies. Pages 2-15 in D.C. Huttunen, editor. 1981 Bristol Bay sockeye salmon smolt studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 73, Juneau.

TABLES

Table 1. Sonar counts recorded from three 14 transducer arrays at the sockeye salmon smolt counting site on the Kvichak River, Bristol Bay, Alaska, 1986.

Sonar Counts Transducer Array Date a Inshore **Offshore** Center Total 5 21 5 22 5 23 5 24 5 25 5 26 5 27 5 28 5 29 5 30 5 31 2 b b 4 b 6 10 6 11 b 6 12 b Total 464,833 785,550 970,371 2,220,754 Percent 20.93 35.37 43.70

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

b Interpolated data.

Table 2. Daily number of sockeye salmon smolt migrating seaward in the Kvichak River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

	Age I			Age II				Age	III		All Ages	
Date ^a	Number	Percent	Cumulative Total	Number	Percent	Cumulative Total	Number P		Cumulati Total	ve Daily Total	Cumulative Total	
5 21	20,557	27.96	20,557	52,966	72.04	52,966	0		0	73,523	73,523	
5 22	120,574	27.96	141,131	310,665	72.04	363,631	0		0	431,239	504,762	
5 23	373,243	25.54	514,374	1,088,164	74.46	1,451,795	0		0	1,461,407	1,966,169	
5 24	1,191,175	25.54	1,705,549	3,472,785	74.46	4,924,580	0		0	4,663,960	6,630,129	
5 25	646,213	17.02	2,351,762	3,150,574	82.98	8,075,154	0		0	3,796,787	10,426,916	
5 26	90,902	17.02	2,442,664	443,187	82.98	8,518,341	0		0	534,089	10,961,005	
5 27	1,321,830	17.02	3,764,494	6,444,506	82.98	14,962,847	0		0	7,766,336	18,727,341	
5 28	2,077,767	45.47	5,842,261	2,491,767	54.53	17,454,614	0		0	4,569,534	23,296,875	
5 29	2,255,563	41.01	8,097,824	3,244,469	58.99	20,699,083	0		0	5,500,032	28,796,907	
5 30	1,810,520	49.80	9,908,344	1,825,062	50.20	22,524,145	0		0	3,635,582	32,432,489	
5 31	4,162,537	49.80	14,070,881	4,195,971	50.20	26,720,116	0		0	8,358,508	40,790,997	
6 1	2,368,057	70.26	16,438,938	1,002,363	29.74	27,722,479	0		0	3,370,420	44,161,417	
6 2	1,083,657	60.22	17,522,595	715,840	39.78	28,438,319	0		0	1,799,497	45,960,914	
6 3	247,074	60.22	17,769,669	163,211	39.78	28,601,530	0		0	410,285	46,371,199	
6 4	6,367,841	60.22	24,137,510	4,206,455	39.78	32,807,985	0		0	10,574,296	56,945,495	
6 5	4,763,208	62.08	28,900,718	2,909,485	37.92	35,717,470	0		0	7,672,693	64,618,188	
6 6	45,777,759	78.13	74,678,477	12,814,022	21.87	48,531,492	0		0	58,591,781	123,209,969	
6 7	5,546,361	59.69	80,224,838	3,745,582	40.31	52,277,074	0		0	9,291,943	132,501,912	
6 8	939,260	79.76	81,164,098	238,347	20.24	52,515,421	0		0	1,177,607	133,679,519	
6 9	1,215,078	79.76	82,379,176	308,339	20.24	52,823,760	0		0	1,523,417	135,202,936	
6 10	633,255	77.43	83,012,431	184,587	22.57	53,008,347	0		0	817,842	136,020,778	
6 11	305,353	64.29	83,317,784	168,231	35.42	53,176,578	1377	.29	1377	474,961	136,495,739	
6 12	152,676	64.29	83,470,460	84,115	35.42	53,260,693	688	.29	2065	237,479	136,733,218	
Tota 1	83,470,460	61.05		53,260,693	38.95		2,065	0.00		136,733,218		

a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 3. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Kvichak River, Bristol Bay, Alaska, 1986.

Date ^a	Mean Weight of Smolt (g)	Smolt per Count
5 21 5 22 5 23 5 24 5 25 5 26 5 27 5 29 5 31 6 2 6 3 6 6 6 6 7 6 6 6 6 7 6 10 6 11 6 12	10.0 10.3 10.3 10.3 9.9 9.9 8.0 8.5 8.1 8.1 6.9 7.3 7.3 7.3 7.3 7.4 6.0 6.0 6.0 6.2 7.2	8.3 8.3 8.1 8.4 8.4 8.4 10.3 9.8 10.3 10.3 12.1 11.4 11.4 11.4 11.4 11.4 11.5 11.6 11.6

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 4. Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1956-1984 brood years, Kvichak River, Bristol Bay, Alaska.

	Total		Number	of Sm	olt Produced		
Brood Year	Spawning Escapement	Age I	Age II		Age III	Total	Per Spawner
		Estimates of	smolt numbers	based	upon fyke net ca	<u>itches</u>	
1956	9,443,318	3,267,274 (54	2,777,960	(46)	0	6,045,234	0.640
1957	2,842,810	85,916 (13	552,603	(87)	0	638,519	0.225
1958	534,785	61,400 (86			0	71,526	0.134
1959	680,000	26,038 (27			0	98,218	0.144
1960	14,630,000	1,130,820 (22			0	5,246,913	0.359
1961	3,705,849	113,338 (7			0	1,716,802	0.463
1962	2,580,884	458,122 (21			0	2,206,300	0.855
1963	338,760	64,377 (73	, , , , , , , , , , , , , , , , , , , ,		0	87,754	0.259
1964	957,120	252,384 (53			0	474,912	0.496
1965	24,325,926	2,866,214 (34			0	8,341,576	0.343
1966	3,775,184	648,321 (55			0	1,189,338	0.315
1967	3,216,208	594,327 (67) 298,282	(33)	0	892,609	0.278
1968	2,557,440	185,356					
		Estimates of	smolt numbers	<u>based</u>	upon sonar tech	<u>ıniques</u>	
1968			5,959,383		0	-	_
1969	8,394,204	85,723,430 (61			0	139,882,770	16.664
1970	13,935,306	464,219 (<1			2,918,768 (1)	195,225,917	14.009
1971	2,387,392	5,123,400 (19			0	26,546,646	11.120
1972	1,009,962	2,740,610	· · · · · · · ·	• •	-	-	-
1973	226,554	•	3,031,287		0	_	-
1974	4,433,844	108,356,892 (49) 114,269,848	(51)	0	222,626,740	50.211

Table 4. (Page 2 of 2)

Total	Number of Smolt Produced									
Brood Spawning Year Escapement	Age I	Age II	Age III	Total	Per Spawne					
	Estimates of s	molt numbers based ι	ıpon sonar tech	niques						
1975 13,140,450	78,308,251 (27) 213,364,470 (73)	0	291,672,721	22.197					
1976 1,965,282			0	58,649,892	29.843					
1977 1,341,144	28,758,191 (73) 10,410,467 (27)	0	39,168,658	29.205					
1978 4,149,288	182,442,540 (85) 32,294,536 (15)	0	214,737,076	51.753					
1979 11,218,434	219,928,232 (71	9,300,703 (29)	0	309,228,935	27.564					
1980 17,505,268	150,421,026 (62) 76,244,773 (38)	0	199,172,858	12.948					
1981 1,754,358	6,549,125 (15) 37,595,987 (85)	0	44,145,112	25.163					
1982 1,134,840	51,893,988 (96) 1,937,408 (4)	2,065	53,833,461	47.437					
1983 3,569,982		53,260,693 (69)	·	76,851,136	a 21.527					
1984 10,490,670	83,470,460			•						

^a Preliminary total

Table 5. Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1952-1984 brood years, Kvichak River, Bristol Bay, Alaska.

			Age I		P	ge II	
	Total ^a	***************************************	F	Adult Returns		R	Adult eturns
Brood Year	Spawning Escapement	Number of Smolt	Adult ^a Returns	per Smolt	Number of Smolt	Adult ^a Returns	per Smolt
		Estimates of sm	olt numbers	based up	on fyke net cat	<u>ches</u>	
1952	-	-			241,870	3,610,258	14.93
1953	-	18,198	152,165	8.36	47,373	424,627	8.96
1954	-	30,287	109,965	3.63	8,654	659,246	76.18
1955	-	22,253	351,240	15.78	66,679	1,132,813	16.99
1956	9,443,318	3,267,274	31,253,977	9.57	2,777,960	7,773,131	2.80
1957	2,842,810	85,916	488,844	5.69	552,603	3,591,552	6.50
1958	534,785	61,400	124,250	2.02	10,126	161,253	15.92
1959	680,000	26,038	328,287	12.61	72,180	217,593	3.01
1960	14,630,000	1,130,820	1,877,221	1.66	4,116,093	53,360,190	12.96
1961	3,705,849	113,338	524,416	4.63	1,603,464	2,971,816	1.85
1962	2,580,884	458,122	256,253	0.56	1,748,178	5,083,162	2.91
1963	338,760	64,377	98,571	1.53	23,377	1,008,242	43.13
1964	957,120	252,384	2,647,042	10.49	222,528	3,093,042	13.90
1965	24,325,926	2,866,214	10,349,415	3.61	5,475,362	34,671,692	6.33
1966	3,775,184	648,321	1,594,186	2.46	541,017	4,657,432	8.61
1967	3,216,208	594,327	621,690	1.05	298,282	900,307	3.02
1968	2,557,440	185,356	332,177	1.79	-		

Table 5. (Page 2 of 2)

			Age I		Age II				
Brood Year	Total ^a Spawning Escapement	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt		
		<u>Estimates of s</u>	molt numbers	based up	on sonar techni	ques			
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983	2,557,440 8,394,204 13,935,306 2,387,392 1,009,962 226,554 4,433,844 13,140,450 1,965,282 1,341,144 4,149,288 11,218,434 22,505,268 1,754,358 1,134,840 3,569,982	85,723,430 464,219 5,123,400 2,740,610 	449,876 56,805 337,402 436,664 1,607,253 8,353,688 6,919,726 6,132,602 2,910,136 2,989,871 20,631,921 4,536,972 1,034,266 936,358	0.01 0.12 0.07 0.16 - 0.08 0.09 0.19 0.10 0.02 0.09 0.03 0.16 0.02 0.00 b	5,959,383 54,159,340 191,842,930 21,423,246 3,031,287 114,269,848 213,364,470 26,423,348 10,410,467 32,294,536 89,300,703 76,244,773 37,595,987 1,937,408 53,260,693	209,105 4,823,046 15,350,282 2,490,225 1,504,342 818,392 17,797,272 31,164,419 4,431,287 307,905 2,169,833 21,194,617 8,527,417 1,143,597 556,002	0.04 0.09 0.08 0.12 		

Includes interception estimates, Yuen and Nelson (1987)
 Future adult returns will increase these values.

Table 6. Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Kvichak River, Bristol Bay, Alaska, 1986.

			Age I					Age I	I 		Age III				
Date ^a	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size
5 21	87	3.3	6.1	.74	6	112	14.0	12.6	3.84	24					
5 22	86	12.4	6.0	2.49	32	108	17.6	11.1	5.16	41					
5 23	90	7.2	8.7	2.75	20	110	22.6	11.7	5.27	68					
5 24	85	10.3	5.7	2.13	35	110	20.6	12.4	7.27	55					
5 25	89	9.4	6.3	1.72	17	106	16.3	10.0	3.99	43					
5 26					0	108	15.1	10.8	4.44	64					
5 27	85	13.1	5.7	2.41	35	105	16.8	10.2	4.92	85					
5 28	86	12.4	5.9	2.15	34	104	17.4	9.8	4.77	56					
5 29	83	11.0	5.4	1.84	64	106	18.5	9.9	5.27	56					
5 30	85	8.7	5.2	1.78	28	107	14.2	10.6	4.23	31					
5 31	84	10.5	5.4	2.24	68	104	13.4	9.8	3.49	52					
6 1	83	11.4	5.3	2.01	84	106	14.6	10.4	4.21	35					
6 2	80	18.8	4.6	2.80	33	111	27.0	11.2	7.70	26					
6 3	85	7.8	5.4	1.42	45	103	13.6	9.2	3.47	15					
6 4	85	8.0	5.5	2.28	28	103	14.4	9.7	3.91	32					
6 5	84	8.8	5.0	1.78	61	109	13.0	10.5	3.74	29					
6 6	83	13.4	4.9	2.09	93	108	16.0	10.1	3.96	27					
6 7	83	11.6	4.9	2.44	107	109	19.2	10.7	5.15	43					
6 8	82	13.3	4.6	2.31	80	102	11.2	7.9	3.15						
6 9	82	12.5	4.8	2.24	78	107	11.2	10.1	3.17	12					
6 10	83	10.4	5.1	2.08	101	104	12.0	10.0	3.06						
6 11	83	8.6	4.8	1.65		108	14.6	10.3	4.43	22					
6 12	81	6.5	5.3	1.28	16	110	15.1	11.3	3.52	11	102		9.1		1
	_														
Totals	1				1,128					854					1
Means	88		5.5			107		10.4			102		9.1		

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 7. Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Kvichak River, Bristol Bay, Alaska, 1986.

		Estima	ited Age	I		Estimat	ed Age I	Ι
Data a	Mean Lengt	h Std.	Stimated Mean Weight	Sample	Mean Lengt	h Std.		Sample
Date ^a	(mm)	Error	(g)	Size	(mm)	Error	(g)	Size
5 21 b 5 22 23 24 5 25 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 2	88 86 86 85 87 83 85 85 85 85 85 85 82 82 83 82 83 82 83 82 83 83 84 85 85 85 85 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	5.5 9.8 9.7 10.6 6.2 .0 17.4 13.4 15.5 10.1 14.5 14.7 8.4 10.8 12.8 15.0 19.7 17.4 13.9 15.3 14.1 16.2	6.1192436545143308988979 6.1492436545143308988979	14 58 44 104 46 1 136 158 178 96 282 312 57 108 133 323 437 442 191 253 373 173 20	111 108 109 110 103 108 107 104 105 108 104 105 116 106 107 107 107 107 107 107 103 106 116	18.8 28.7 28.8 29.7 19.9 19.2 25.7 24.3 23.3 21.9 17.5 19.3 22.9 22.3 20.2 25.5 29.1 11.8 18.8 18.5 18.3 14.9	11.8 11.1 11.5 11.6 9.8 11.1 10.7 9.8 9.9 10.8 9.6 9.7 12.7 10.1 10.1 10.1 10.3 8.9 10.8 9.2 10.0 12.6	86 142 257 191 135 323 196 216 135 183 111 48 41 96 102 91 260 10 45 92 19
	****				-			
Totals				1543				2349
Means	100		8.6		120		14.7	

-Continued-

- Length-weight parameters by age group and discriminating length used to separate ages for 21 May through 30 May were; age I a= -9.42 b= 2.50 r²= .69 n= 273 age II a= -10.13 b= 2.66 r²= .83 n= 521 discriminating length = 93.5
- Length-weight parameters by age group and discriminating length used to separate ages for 31 May through 12 June were; age I a=-10.92 b=2.83 $r^2=.77$ n=882 age II a=-10.44 b=2.73 $r^2=.85$ n=334 discriminating length = 92.5

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 8. Age composition of total migration, and mean fork length and weight by age class, for sockeye salmon smolt, Kvichak River, Bristol Bay, Alaska, 1955-1986.

		Age I			Age II	·		Age III			
Year of Migration	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)		References
1955 ^a	7	89	_	93	_	_	0	_	_	260,068	Paulus and Parker (1974)
1956 ^a	39	92		61	116	_	0	-	_	77,660	"
1957 ^a	72	96	7.3	28	120	14.4	0	_	_	30,907	**
1958 ^a	98	84	4.6	2	114	_	0	_	_	3,333,953	"
1959 ^a	3	80	_	97	99	7.6	0	-	_	2,863,876	"
1960 ^a	10	91	6.3	90	108	10.3	0	_	_	614,003	"
1961 ^a	72	92	6.8	28	117	13.1	0	_	_	36,164	**
1962 ^a	94	82	4.3	6	110	9.9	0	_	_	1,203,000	**
1963 ^a	3	83	4.8	97	98	7.5	0	-	_	4,229,431	Marriott (1965)
1964 ^a	22	87	5.2	78	108	9.8	0	-	-	2,061,586	Pennoyer and Seibel (1965)
1965 ^a	4	90	6.8	96	109	11.3	0	-	-	1,812,555	Pennoyer (1966)
1966 ^a	92	94	7.4	8	114	12.6	0	-	-	275,761	Pennoyer and Stewart (1967)
1967 ^a	93	86	5.9	7	118	14.2	0	-	-	3,088,742	Pennoyer and Stewart (1969)
1968 ^a	11	88	5.5	89	104	9.2	0	-	-	6,123,683	Paulus and McCurdy (1969)
1969 ^a	52	92	5.7	48	109	10.6	0	-	-	1,135,344	McCurdy and Paulus (1972)
1970 ^a	38	91	6.0	62	110	11.0	0	-	-	483,638	Paulus and McCurdy (1972)
1971 ^b	93	90	5.8	7	111	11.1	0	-	-	91,682,813	Russell (1972)
1972 ^b	1	80	4.2	99	106	10.0	0	-	-	54,623,559	Parker (1974a)
1973 ^b	3	86	5.1	97	97	8.3	0	-	- 1	196,966,331	Parker (1974b)
1974 ^b	9	96	8.3	79	111	13.1	12	124	17.5	27,082,626	Krasnowski (1975)
1975 ^b	63	98	8.4	37	122	16.4	0	-	-	15,632,531	Randall (1976)
1976 ^b	97	88	5.8	3	121	14.2	0	-	- 1	111,388,180	Randall (1977)
1977 ^b	38	86	5.5	62	106	10.1	0	-	- 1	192,578,099	Randall (1978)
1978 ^b	12	88	6.0	88	97	7.8	0	-	- 2	245,591,014	Yuen (1980a)

Table 8. (Page 2 of 2)

		Age I			Age II		Age III				
Year of Migration	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Total Estimate	References
1979 b	51	90	6.0	49	109	10.3	0	_	- 5	55,181,540	Yuen (1980b)
1980 b	94	88	5.9	6	110	10.7	0	_		2,853,007	Yuen and Wise (1982)
1981 b	89	85	5.4	11	108	10.2	0	_		2,222,769	Bergstrom and Yuen (1981)
1982 b	58	84	5.1	39	103	9.1	0	_		9,721,729	Bill (1984)
1983 ^b	8	80	4.9	92	98	8.5	0	_		2,793,899	Bill et al. (1987)
1984 ^b	58	90	6.8	42	104	10.0	0	-	- 8	9,489,975	Bill (1986)
1985 ^b	92	85	5.3	8	102	9.2	0	-	- 2	5,527,851	Bill (1986)
		_									
	Mean	88	5.9		109	10.7		124	17.5		
1986 ^b	61	84	5.5	39	107	10.4	0	102	9.1		

Estimate of smolt numbers based on fyke net catches Estimate of smolt numbers based on sonar techniques

Climatological and hydrological observations made at sockeye salmon smolt counting site, Kvichak River, Bristol Bay, Alaska, 1986.

	Cloud	l Cover ª		elocity m/h)		Temp. C)	Mean Water	11. 1
Date	0800 hr	2000 hr	0800 hr	2000 hr	Min	Max	Temp. (°C)	Water Clarity
5 18	5	1	5 N	5 N	2.2	_	5.0	clear
5 19	4	2	10 SW	15 SW	-0.6	-	3.5	clear
5 20	4	2 3 1	5 S	calm	1.7	-	4.0	clear
5 21	1	1	calm	calm	-	-	4.5	clear
5 22	1	2 1 3 3 1	calm	25 NE	1.1	10.0	5.8	clear
5 23	1	1	15 NE	10 E	3.3	13.3	6.3	clear
5 24	1	3	5_SE	calm	1.1	18.9	6.5	clear
5 25	1	3	calm	10 E	3.3	12.8	6.8	clear
5 26	1		calm	10 NW	3.3	16.7	7.3	clear
5 27	1	1 1 3 4 2 4	calm	7 N	3.3	16.7	7.3	clear
5 28	1	1	5_NE	5 N	5.0	20.0	7.8	clear
5 29	1	3	calm	15 W	-	13.3	7.9	clear
5 30	4	4	10 NE	10 NE	8.9	9.4	8.0	clear
5 31	3 3 2	2	10 NE	5 S	5.6	10.0	7.8	turbid
6 1	3		5 NE	5 E	6.1	8.9	7.5	clear
6 1 6 2 6 3		4	5 NE	35 E	5.0	8.3	7.0	clear
6 3	4	4	30 NE	35 E	5.6	-	7.0	turbid
6 4	4	4	15 E	calm		-	6.7	turbid
6 5 6 6	4	3	5 SW	calm	7.8	-	7.3	turbid
6 6	3	4	25 NW	10 NE	7.8	8.9	7.0	turbid
6 7	4	4	15 NE	5 NE	8.3	12.2	7.0	lt.brn.
6 8 6 9	4 2 5 2	4 3 2 3 4	5 NE	15 NE	6.7		7.5	lt.brn.
0 9	۷ ـ	۷	5 NE	10 NE	-	11.1	8.0	turbid
6 10	5	3	5 SW	10 N	3.3	12.8	8.5	lt.brn.
6 11		4	10 E		7.8	12.2	8.8	lt.brn.
6 12	4				6.7	-	8.0	turbid

^{1 =} cloud cover not more than 1/10

^{2 =} cloud cover not more than 1/2

^{3 =} cloud cover more than 1/2 4 = completely overcast

^{5 =} fog

Table 10. Water temperatures at sockeye salmon smolt counting site, Kvichak River, Bristol Bay, Alaska, 1963-1986.

			Water T	emperatur	e (°C)	
Year	Sample Period		Minimum	Maximum	Mean	
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985	16 May-14 18 May-14 17 May-11 16 May-26 17 May-20 12 May-12 16 May-18 13 May-7 17 May-20 18 May-14 13 May-9 17 May-15 18 May-19 17 May-14 19 May-9 1 June-10 16 May-18 15 May-9 14 May-15 19 May-14 19 May-15 19 May-14	June June June June June June June June	2.2 0.0 0.0 0.0 1.1 3.3 0.3 2.8 1.1 0.6 2.9 3.0 2.0 2.0 3.0 5.0 8.0 1.5 7.0 2.5 5.2 5.2	8.9 5.6 8.9 11.1 9.4 8.3 7.8 11.1 3.3 5.0 8.9 8.0 9.5 9.5 11.0 10.0 9.0 10.0 8.5 10.5 10.0 7.0	5.6 4.7 6.4 6.9 6.8 6.9 6.6 6.9 6.6 6.7 6.6 6.7 6.7 6.6 6.7 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	Marriott (1965) Pennoyer and Seibel (1965) Pennoyer (1966) Pennoyer and Stewart (1967) Pennoyer and Stewart (1969) Paulus and McCurdy (1969) McCurdy and Paulus (1972) Paulus and McCurdy (1972) Russell (1972) Parker (1974a) Parker (1974b) Krasnowski (1975) Randall (1976) Randall (1977) Randall (1978) Yuen (1980a) Yuen (1980b) Bergstrom and Yuen (1981) Yuen and Wise (1982) Bill (1984) Bill et al. (1987) Bill (1986)
		Mean	2.7	8.7	5.5	
1986	18 May-12	June	1.0	7.0	4.6	

Table 11. Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Naknek River, Bristol Bay, Alaska, 1986.

		Sonar Counts		
		Transducer Arra	ay	
Date a	Inshore	Center	Offshore	Total
5 23 5 24 5 25 5 27 5 28 9 31 1 2 3 4 5 6 7 8 9 101 123 145 166 178 190 1123 1134 1136 1145 1156 1166 1178 1178 1189 1189 1189 1189 1189 1189	0 13 0 466 2,912 2,711 1,614 3,393 657 3,081 1,137 11,962 9,639 2,267 3,685 1,160 812 1,948 3,796 5,858 7,921 9,983 968 12,861 11,217 8,785 1,095 1,414 5,818 7,525 13,868 4,197	0 86 15 1,906 7,979 14,594 27,045 16,178 12,899 68,317 124,635 79,652 16,648 25,492 38,837 28,170 14,075 6,659 2,933 30,530 58,132 85,733 31,697 11,837 19,922 16,900 23,373 38,778 77,662 86,675 22,196 7,347	0 41 72 124 537 171 4,308 10,847 2,036 20,755 22,632 25,036 3,676 5,177 7,582 3,696 5,805 853 270 5,674 11,079 16,484 6,769 606 5,166 3,293 1,610 1,667 18,997 28,945 6,885 1,020	0 140 87 2,496 11,428 17,476 32,967 30,418 15,592 92,153 148,404 116,650 29,963 32,936 50,104 33,026 20,692 9,460 6,999 42,062 77,132 112,200 39,434 25,304 36,305 28,978 26,078 41,859 102,477 123,145 42,949 12,564

⁻ Continued -

Table 11. (Page 2 of 2)

		Sonar Co	ounts	
		Transducer Arra	ay	
Date ^a	Inshore	Center	Offshore	Total
6 24 6 25 6 26 6 27	16,467 15,209 680 333	24,951 1,809 1,590 4,456	1,224 453 160 362	42,642 17,471 2,430 5,151
Total Perce	ŕ	1,029,708	224,012	1,429,172

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 12. Daily number of sockeye salmon smolt migrating seaward in the Naknek River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

	Ag	e I	Age	II	Age	III	A11	Ages
Date ª	Number	Percent	Number	Percent	Number	Percent	Daily Total	Cumulative Total
5 23	0		0		0		0	0
5 24	151	4.94	2,904	94.70	11	.36	3,066	3,066
5 25	78	4.94	1,502	94.70	5	.36	1,585	4,651
5 26	2,813	4.94	53,926	94.70	204	.36	56,943	61,594
5 27	12,327	4.94	236,325	94.70	898	.36	249,550	311,144
5 28	20,421	4.94	391,484	94.70	1,488	.36	413,393	724,537
5 29	37,283	4.94	714,723	94.70	2,717	.36	754,723	1,479,260
5 30	30,834	4.94	591,100	94.70	2,247	.36	624,181	2,103,441
5 31	37,759	9.54	356,576	90.09	1,464	.37	395,799	2,499,240
5 1	218,014	9.54	2,058,798	90.09	8,455	.37	2,285,267	4,784,507
5 2]	1,469,972	35.53	2,667,299	64.47	. 0		4,137,271	8,921,778
5 3 1	1,551,474	47.81	1,693,609	52.19	0		3,245,083	12,166,861
5 4	625,599	71.63	246,379	28.21	1,397	.16	873,375	13,040,236
5 5	590,635	58.75	414,701	41.25	0		1,005,336	14,045,572
5 6	886,780	58.45	630,380	41.55	0		1,517,160	15,562,732
5 7	739,374	66.03	380,381	33.97	0		1,119,755	16,682,487
8 6	485,185	70.46	203,411	29.54	0		688,596	17,371,083
5 9	154,799	56.91	117,208	43.09	0		272,007	17,643,090
5 10	47,644	34.69	89,699	65.31	0		137,343	17,780,433
5 11	689,231	56.10	536,888	43.70	2,457	.20	1,228,576	19,009,009
5 12 1	l,288,754	56.10	1,003,895	43.70	4,594	.20	2,297,243	21,306,252
	l,888,249	56.10	1,470,882	43.70	6,731	.20	3,365,862	24,672,114
	1,095,934	75.30	357,743	24.58	1,746	.12	1,455,423	26,127,537
5 15	309,635	53.03	273,668	46.87	583	.10	583,886	26,711,423
5 16	490,831	53.03	433,816	46.87	925	.10	925,572	27,636,995
5 17	484,329	60.90	310,956	39.10	0	3	795,285	28,432,280

Table 12. (Page 2 of 2)

	Age I		Age	II	Age	III	All	Ages	
Date	a Number	Percent	Number	Percent	Number	Percent	Daily Total	Cumulative Total	
6 18	576,741	66.85	284,186	32.94	1,725	.20	862,652	29,294,932	
6 19	1,039,728	70.13	442,844	29.87	0		1,482,572	30,777,504	
6 20	2,339,167	70.13	996,305	29.87	0		3,335,472	34,112,976	
6 21	2,761,096	70.13	1,176,015	29.87	0		3,937,111	38,050,087	
6 22	879,373	72.47	334,057	27.53	0		1,213,430	39,263,517	
6 23	262,558	72.47	99,741	27.53	0		362,299	39,625,816	
6 24	762,167	66.16	389,838	33.84	0		1,152,005	40,777,821	
6 25	207,592	66.16	106,180	33.84	0		313,772	41,091,593	
6 26	46,061	66.16	23,559	33.84	0		69,620	41,161,213	
6 27	111,243	66.16	56,899	33.84	0		168,142	41,329,355	
「otal	22,143,831	53.58	19,147,877	46.33	37,647	0.09	41,329,355		

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 13. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts Naknek River, Bristol Bay, Alaska, 1986.

Date ^a	Mean Weight of Smolt (g)	Smolt per Count
5 23	15.4	2.7
5 24	15.4	2.7
25 26	15.4 15.4	2.7
26 27	15.4	2.7 2.7
28	15.4	2.7
29	15.4	2.7
5 28 5 29 5 30 5 31	15.4	2.7
31	14.0	3.0
5 2	14.0 12.9	3.0 3.2
5 3	12.0	3.5
5 1 5 2 5 3 5 4	10.3	4.0
5 5	11.4	3.6
5 6	11.5	3.6
5 7 5 8	10.6 10.2	3.9 4.1
5 9	10.2	3.7
5 10	13.2	3.2
5 11	11.3	3.7
5 12	no sample	3.7
5 13	11.3	3.7
5 14 5 15	9.4 11.6	4.4 3.6
5 16	11.6	3.6
5 17	10.9	3.8
5 18	10.8	3.8
5 19	10.2	4.1
5 20 5 21	10.2 no sample	4.1 4.1
5 22	10.0	4.2
23	10.0	4.2
5 24	10.5	4.0
25	no sample	4.0
5 26 5 27	no sample no sample	4.0 4.0

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 14. Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1978-1984 brood years, Naknek River, Bristol Bay, Alaska.

	Total		Number of Smolt Produced							
Brood Year	Spawning Escapement	Age I	Age II	Age III	Total	Per Spawner				
1978	813,378	-	_	_	600	_				
1979	925,362	-	12,898,936	23,256	-	-				
1980	2,644,698	115,624,396 (88)	16,497,326 (12)	594,898	132,716,620	50.18				
1981	1,796,220	36,798,239 (43)	48,825,473 (57)	20,579	85,644,291	47.68				
1982	1,155,552	32,139,569 (71)	13,370,305 (29)	37,647	45,547,521	39.42				
1983	888,294	6,306,803	19,147,877	,	, ,					
1984	1,242,474	22,143,831	, , , , , , ,							

Table 15. Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1977-1984 brood years, Naknek River, Bristol Bay, Alaska.

			Age I			Age II		Į.	Nge III	
	Total ^a			Adult Returns			Adult Returns			Adult Returns
Brood Year	Spawning Escapement	Number of Smolt	Adult ^a Returns	per Smolt	Number of Smolt	Adult ^a Returns	per Smolt	Number of Smolt	Adult ^a Returns	per Smolt
1977	1,085,856	-	2,976,617		-	495,092		0	4,905	
1978	813,378	-	2,034,044		-	1,639,386		0	1,449	
1979	925,362	-	3,394,642		12,898,936	1,197,608	0.09	23,256	6,300	0.27
980	2,644,698	115,624,396	2,193,821	0.02	16,497,326	2,048,890	0.12	594,898	0	0.00
981	1,796,220	36,798,239	3,371,113	0.09 b	48,825,473	1,997,593	0.04 b	20,579	0	0.00
.982	1,155,552	32,139,569	977,378	0.03 b	13,370,305	217,169	0.02 b	37,647		
983	888,294	6,306,803			19,147,877					
1984	1,242,474	22,143,831								

a Includes interception estimates, Yuen and Nelson (1987) b Future adult returns will increase these values.

Table 16. Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Naknek River, Bristol Bay, Alaska, 1986.

			Age I					Age I	I				Age I	ΙΙ	
Date ^a	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)		Sample Size
5 23					0	109		14.2		1					0
5 24	90	5.9	7.6	1.49	2	120	12.7	15.8	3.98	3 22					0
5 25	105		12.0		1	121	18.7	16.4	6.09	28	141		27.4		1
5 26	110		12.7	. 77	2	125	11.7	18.2	5.62	2 23					0
5 27					0	123	12.5	17.4	4.45	5 18					0
5 28					0	120	14.2	16.5	5.17	7 30					0
5 29					0	117	20.5	15.7	7.50	60					0
5 30	109	3.5	11.5	.98	3	119	17.4	14.1	5.97	7 54					0
5 30	116		14.0		1	120	20.4	15.8	8.13	3 57	123		12.1		1
5 31	106	3.8	11.1	. 76	3	114	17.9	14.2	6.07	7 56	143		23.0		1
6 1	103		9.2		1	114	13.9	13.9	5.32	2 29					0
6 2	103	15.5	11.2	5.66	79	115	20.8	14.3	7.96	5 130					0
6 3	101	16.1	10.2	4.08	38	113	20.3	13.6	6.02	2 22					0
6 4	96	24.8	9.2	7.64	139	110	17.1	13.3	5.73	1 38	128		19.1		1
6 5	99	17.1	10.3	6.02	78	111	16.7	13.4	5.98	2 42					0
6 6	97	17.8	9.6	5.18	85	113	19.3	14.0	7.97	7 33					0
6 7	93	21.4	8.4	5.62	73	116	19.7	15.2	8.02	2 17					0
6 8	93	17.2	9.2	4.98	77	119	10.1	16.3	6.8	2 13					0
6 9	95	21.3	9.2	6.37	63	114	18.9	14.6	8.0	7 26					0
6 10	96	19.9	9.3	6.39	52	119	23.0	15.6	11.10	68					0
6 11	100	16.6	9.6	5.32	22	121	20.0	16.6	9.8	62	125		19.4		1
6 14	92	21.7	8.4	6.23	201	111	23.0	13.0	7.20	38	148		31.2		1
6 16	91	15.5	8.8	4.30	58	120	21.3	16.4	6.8	4 50	135		20.4		1
6 17	97	18.3	9.5	6.79	80	114	23.7	14.0	8.39	9 69					0
6 18	96	14.1	8.6	4.01	114	113	27.9	13.8	10.47	7 42	130	7.7	21.9	2.20	2
6 19	95	17.7	8.1	4.12	31	113	25.2	12.7	7.3	2 17					0
6 20	96	12.1	9.1	3.69	47	113	16.6	14.1	4.78	3 12					0
Totals					1,250			***************************************		1,079					9
Means	99		9.9			116		14.9			134		21.8		

 $^{^{\}mathrm{a}}$ Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 17. Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Naknek River, Bristol Bay, Alaska, 1986.

		Estima	ted Age	I		Estima	ted Age	II
Date ^a	Mean Length (mm)	Std. Error	stimated Mean Weight (g)	Sample Size	Mean Length (mm)		stimated Mean Weight (g)	Sample Size
5 28 b 5 29 5 31 1 c 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	104 106 106 103 101 101 99 94 98 97 94 93 92 98 92 95 95 95 95 94 91 93 94	3.0 4.8 5.2 4.7 10.5 17.4 18.6 26.7 23.8 22.1 22.7 25.9 24.0 25.7 16.4 19.0 15.2 20.3 13.7 16.1 17.6 14.5 15.7	10.8 11.2 11.4 11.0 10.5 10.4 10.0 8.7 9.5 8.7 8.2 9.6 8.2 7.7 8.1 8.8 9.0 8.8 8.9 8.5 8.1 8.5 8.6	2 8 42 22 61 210 202 292 316 375 313 370 280 137 387 395 201 142 299 613 192 255 233 218 242	119 118 118 117 115 113 113 112 115 116 114 117 117 117 117 117 117 117 117 117	15.3 12.7 23.1 25.7 24.3 23.2 20.2 13.9 19.2 24.6 20.9 17.9 22.2 26.9 22.9 19.1 24.6 18.9 20.0 25.5 17.1 10.2 10.3 22.2	15.6 15.1 15.3 15.1 14.3 13.6 13.7 13.5 13.6 14.7 14.1 15.2 14.8 14.4 16.1 13.9 13.5 14.8 13.5 14.8	68 41 277 267 282 325 151 47 117 175 92 61 103 198 112 43 116 103 105 177 36 31 13 35 23
Totals Means	96		9.3	5,807	115		14.4	2,998

-Continued-

- Length-weight parameters by age group and discriminating length used to separate ages for 25 May through 1 June were; age I a= -9.08 b= 2.46 r²= .92 n= 13 age II a= -8.96 b= 2.45 r²= .76 n= 377 discriminating length = 109.3
- Length-weight parameters by age group and discriminating length used to separate ages for 2 June through 10 June were; age I a=-9.89 b= 2.65 $r^2=.78$ n= 683 age II a=-9.77 b= 2.62 $r^2=.66$ n= 388 discriminating length = 106.9
- Length-weight parameters by age group and discriminating length used to separate ages for 13 June through 24 June were; age I a=-7.89 b=2.21 $r^2=.58$ n=552 age II a=-9.49 b=2.55 $r^2=.77$ n=289 discriminating length = 105.7

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 18. Mean fork length and weight of sockeye salmon smolt sampled from the Naknek River, Bristol Bay, Alaska, 1957-1986.

			Age	e I	Age	II	Age	e III	
Year of Migration	Sample Dates	Sample Size	Mean Length	Mean Weight	Mean Length	Mean Weight	Mean Length	Mean Weight	References
1957	_	_	111	13.1	112	13.1	_		USF&WS (unpublished
1958	-	_	91	6.9	114	11.3	_	-	
1959	-	-	97	8.2	106	10.1	-	-	11
1960	-	-	99	8.8	109	11.9	-	-	"
1961	-	-	103	10.8	113	13.8	-	_	11
1962	-	-	105	10.4	112	12.5	-	-	"
1963	-	_	98	8.1	114	12.8	-	-	
1964	-	_	97	7.7	110	11.0	-	-	· ·
1965	-	_	99	8.4	114	13.0	-	-	n
1966 31	May-13 July	933	106	10.6	118	14.2	-	-	Robertson (1967)
1967 27	May- 9 July	855	113	13.1	119	14.7	-	-	Van Valin (1969a)
1968 23	May-12 August	1,380	99	8.4	108	11.1	-	-	Van Valin (1969b)
1969 30	May-27 June	1,079	100	7.5	112	12.1	-	-	Siedelman (1972)
1970 29	May- 5 July	932	100	9.0	114	12.1	-	_	Biwer (1972)
1971 6	June-7 July	-	102	8.8	120	13.5	-	_	McCurdy (1972a)
1972 8	June-6 July	689	98	9.1	110	11.9	-	-	McCurdy (1974a)
1973 28	May-26 June	745	106	10.7	114	12.9	122	15.2	McCurdy (1974b)
1974 22	May-27 June	827	104	10.3	118	14.5	109	11.3	Bill (1975)
1975 28	May- 9 July	1,037	98	8.3	111	12.1	109	11.5	Bill (1976)
1976 22	May-26 June	833	91	7.2	107	13.4	131	22.2	Bill (1977)
1977 20	May-23 June	1,178	92	7.2	113	11.9	-	-	Yuen (1978)
1978	1 June	239	96	8.3	105	11.0	-		Huttenun (1980)
1982 24	May-10 July	3,222	94	8.0	100	14.7	-	-	Huttenun (1984)
1983 17	May- 5 July	2,480	94	8.0	110	12.2	133	19.1	Fried et al. (1987)
1984 22	May- 5 July	3,011	97	8.8	108	11.4	124	16.7	Fried et al. (1986)
1985 23	May- 1 July	6,528	96	8.7	109	11.7	119	15.6	Bue (1986)
	-								
		Mean	100	8.3	112	12.6	121	16.0	
1986 23	May-27 June	2,329	99	9.9	116	14.9	134	21.8	

Table 19. Climatological and hydrological observations made at sockeye salmon smolt counting site, Naknek River, Bristol Bay, Alaska, 1986.

	Cloud	Cover ^a		Velocity km/h)		Water		
Date	0800 hr	2000 hr	0800 hr	2000 hr	Air Temp. (°C)	Temp. (°C)	Precipitation (mm)	Water Clarity
5 23	_	1	_	***		9.5	0.0	_
5 24	1		- SW	– W	0.0-20.0	9.0- 9.0	0.0	turbid
5 25	5	2 3	- SW	- SW	1.1-20.0	12.0-11.5	0.0	clear
5 26	3	1	4 N	8 N	0.5-17.8	11.0-12.0	0.0	turbic
5 27	1	2 1	3 N	3 NW	-2.2-17.8	11.0-12.0	0.0	turbic
5 28	5		7 SW	3 S	1.1-19.0	10.0-13.0	0.0	turbio
5 29	1	3	5 NE	15 S	1.1-18.0	12.0-13.0	0.0	turbic
5 30	4	4	3.5 SE	8 W	7.2-16.6	12.0-12.0	0.0	turbio
5 31	3	3	0 SE	9-10 SE	5.6-13.3	11.0-13.0	1.5	turbic
6 1	4	4	0	8 S	4.4-12.2	11.0-13.0	10.4	turbic
62	4	4	3.5 SE	10 NE	14.4-14.4	10.0-10.0	0.5	turbic
6 3	3	4	8 SE	8 SE	10.0-11.1	9.0- 9.0	0.3	turbio
6 4	3	4	O NE	9 SE	5.6-15.6	9.0- 9.5	0.3	turbio
6 5	1	2	0 SE	5-10 SE	0.0-16.7	9.0- 9.5	0.0	turbid
6 6	4	3	7 SE	7 NE	8.9-13.9	9.0- 9.5	0.0	turbid
6 7	4	3	9.5 NE	3 S	10.0-12.2	9.0- 9.0	0.0	turbid
6 8	4	2 3 3 3 3	9.5 NE	3 S	11.0-11.0	11.0- 9.5	0.0	turbid
69	3 5	3	calm	calm	0.0-16.7	9.5- 9.5	0.2	turbic
6 10		3	O NE	5 SE	1.1-16.7	11.0-11.0	0.0	turbic
6 11	2	-	calm	40 NE		11.0	0.0	turbid
6 12	4	-	40 NE	40 NE		8.5	0.0	turbid
6 13	4	4	- NE	calm	5.6-11.1	9.0- 9.0	0.2	turbid

Table 19. (Page 2 of 2)

	Cloud	Cover ^a		Velocity m/h)		Water		
Date	0800 hr	2000 hr	0800 hr	2000 hr	Air Temp. (°C)	Water Temp. (°C)	Precipitation (mm)	Water Clarity
6 14	4	2	calm	calm	7.2- 8.9	11.0-10.0	0.1	turbid
6 15	2	1	calm	5 S	3.3-21.0	10.0-12.0	0.0	clear
6 16	2	3	4 S	3-5 SW	18.5	10.0-12.0	0.0	turbid
6 17	4	4	6 S	5 SW	4.4-21.0	10.0- 9.5	0.0	turbid
6 18	4	4	- S	calm	6.1-11.6	9.0- 9.5	0.0	turbid
6 19	4	3	calm	5-10 NE		10.0	0.0	turbid
6 20	3	4	6-7 NE	10-20 NE	6.7-14.4	10.0-10.0	tr.	turbid
6 21	4	4	calm	0-5 NE	7.7-14.4	10.5-10.0	tr.	turbid
6 22	4	4	calm	15 W	6.1-16.6	11.0-11.0	0.02	turbid
6 23	4	4	3-5 SE	15 NE	6.4- 9.0	10.0-10.0	0.0	turbid
6 24	4	4	3-5 SE	5 SE	8.5-10.0	10.0-10.5	0.0	turbid
6 25	4	4	3-5 SE	10-15 SE	4.4- 9.0	9.5-10.5	0.0	turbid
6 26	4	4	calm	3-5 SE	7.8- 9.0	10.0-11.0	0.0	turbid
6 27	4	4	calm	3-5 NE	6.1- 9.0	10.0-11.5	tr.	turbid
6 28	4	-	calm		10.5	10.5	0.0	-

^{1 =} cloud cover not more than 1/10
2 = cloud cover not more than 1/2
3 = cloud cover more than 1/2
4 = completely overcast
5 = fog

Table 20. Water temperatures at sockeye salmon smolt counting site, Naknek River, Bristol Bay, Alaska, 1967-1986.

		Water Te	emperature	e (°C)	
Year	Sample Period	Minimum	Maximum	Mean	Reference
	21 May-14 July 27 May-16 July 27 May-16 June 7 June- 7 July 8 June- 6 July 29 May-26 June 21 May-27 June 28 May- 9 July 22 May-26 June 21 May-10 July 20 May- 6 July 19 May- 6 July	10.6 7.2 6.7 11.1 4.4 6.7 6.9 8.1 3.5 4.6 5.0 8.0 7.5	14.3 13.2 12.8 14.4 16.0 16.0	12.1 7.2 10.1 11.1 12.1 9.0 9.5 8.9 12.8 13.0	Van Valin (1969a) Van Valin (1969b) Siedelman (1972) Biwer (1972) McCurdy (1972a) McCurdy (1974a) McCurdy (1974b) Bill (1975) Bill (1976) Bill (1977) Huttenun (1984) Fried et al. (1987)
1985 1986	21 May- 3 July Mean 23 May-28 June	6.5 —— 6.9 8.5	16.0 ————————————————————————————————————	10.5 10.9 10.4	Bue (1986)

Table 21. Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Egegik River, Bristol Bay, Alaska, 1986.

		Sonar Counts							
		Transducer Array							
Date ^a	Inshore	Center	Offshore	Total					
5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 5 27 5 28 5 29 5 31 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 55 9 3,355 12,174 147,053 396,887 246,902 460,264 9,320 151,680 382,573 3,398 133,684 32,359 27,751 502 153 949 1,930 129 2,952	0 0 0 45 335 3,172 12,715 156,173 235,629 48,318 207,342 29,271 189,439 31,399 538 36,895 9,023 3,498 14,617 861 850 2,926 633 2,352	0 0 0 125 265 408 16,298 44,746 145,313 34,426 148,408 28,994 51,051 53,878 301 37,136 3,130 4,631 29,646 605 35 4,196 495 1,417	0 0 0 225 609 6,935 41,187 347,972 777,829 329,646 816,014 67,585 392,170 467,850 4,237 207,715 44,512 35,880 44,765 1,619 1,834 9,052 1,257 6,721					
Total	2,014,079	986,031	605,504	3,605,614					
Percen	t 55.86	27.35	16.79						

Sample day began at 1200 hours and ended at 1159 hrs the next calendar day.

Table 22. Daily number of sockeye salmon smolt migrating seaward in the Egegik River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

	Age	· I	Age	· II	Age	· III	A11	Ages
Date ^a	Number	Percen	t Number	Percent	Number	Percent	Daily Total	Cumulative Total
5 18	0		0		0		0	0
5 19	0		. 0		Ō		Ö	0
5 20	Ō		0		0		Ō	0
5 21	0		0		0		0	0
5 22	18	.94	1993	98.93	2	.13	2013	2013
5 23	47	.94	5039	98.93	6	.13	5092	7105
5 24	600	.94	63225	98.93	83	.13	63908	71013
5 25	3425	.94	360547	98.93	473	.13	364445	435458
5 26	442115	12.25	3166988	87.75	0		3609103	4044561
5 27	871388	10.88	7137694	89.12	0		8009082	12053643
5 28	388809	10.88	3184809	89.12	0		3573618	15627261
5 29	2850564	28.28	7229225	71.72	0		10079789	25707050
5 30	28184	4.52	595375	95.48	0		623559	26330609
5 31	491442	11.95	3621049	88.05	0		4112491	30443100
6 1	5355375	66.87	2653261	33.13	0		8008636	38451736
6 2	48203	66.87	23881	33.13	0		72084	38523820
6 3	2292073	66.87	1135582	33.13	0		3427655	41951475
6 4	437577	61.18	277652	38.82	0		715229	42666704
6 5 6 6	324637	57.68	238187	42.32	0		562824	43229528
6 6	418019	64.66	228469	35.34	0		646488	43876016
6 7	15277	64.66	8349	35.34	0		23626	43899642
6 8	19801	64.66	10822	35.34	0		30623	43930265
6 9	89791	64.66	49075	35.34	0		138866	44069131
6 10	11912	64.66	6510	35.34	0		18422	44087553
6 11	71328	64.66	38984	35.34	0		110312	44197865
Total :	14,160,585	32.04	30,036,716	67.96	564	0.00	44,197,865	

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 23. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Egegik River, Bristol Bay, Alaska, 1986.

ate ^a	Mean Weight of Smolt (g)	Smolt per Count
18	no sample	2.3
19	no sample	2.3
20	no sample	2.3
21	no sample	2.3
22	18.2	2.3
23	no sample	2.3
24	18.2	2.3
25 26	18.2	2.3
27	15.7 16.2	2.6 2.6
28	16.2	2.6
29	13.7	3.0
	16.8	2.5
30 31 1	15.6	2.7
1	10.6	3.9
	no sample	3.9
3	10.6	3.9
2 3 4 5 6 7	11.0	3.8
5	11.5	3.6
6	10.6	3.9
7	10.6	3.9
8	10.6	3.9
9	no sample	3.9
10 11	no sample no sample	3.9 3.9

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 24. Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1978-1984 brood years, Egegik River, Bristol Bay, Alaska.

	Total	Number of Smolt Produced									
Brood Year	Spawning Escapement	Age I	Age II	Age III	Total	Per Spawner					
1978	895,698	-	_	225,522	_	_					
1979	1,032,042	-	14,287,075	0	-	-					
1980	1,060,860	49,457,563 (74)	16,524,563 (25)	197,429	66,179,555	62.38					
1981	694,680	2,242,326 (7)	32,235,734 (93)	52,852	34,530,912						
1982	1,034,628	17,234,269 (60)	11,434,848 (40)	564	28,669,681	27.71					
1983	792,282	54,585,828	29,984,140 ` ′		, ,						
1984	1,165,320	14,016,441	, , ,								

Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1978-1984 brood years, Egegik River, Bristol Bay, Alaska.

			Age I			Age II		Age III			
Brood Year	Total ^a Spawning Escapement	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	
1978	895,698	-	907,413		-	8,310,922		225,522	33,756	0.15	
1979	1,032,042	-	1,246,161		14,287,075	4,737,895	0.33	0	0	0.00	
.980	1,060,860	49,457,563	3,027,613	0.06	16,524,563	5,502,662	0.33	197,429	7,732	0.04	
981	694,680	2,242,326	1,533,092	0.68	32,235,734	4,868,868	0.15 ^b	52,852	8,726	0.17 ^b	
982	1,034,628	17,234,269	2,895,570	0.17	11,434,848	1,814,189	0.16 ^b	564	0	0.00 ^b	
983	792,282	54,585,828	1,759,245	0.03 ^b	29,984,140	7,304	0.00 b				
984	1,165,320	14,016,441									

a Includes interception estimates, Yuen and Nelson (1987)
 b Future adult returns will increase these values.

Table 26. Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Egegik River, Bristol Bay, Alaska, 1986.

			Age I				Age II					Age III				
	Mean Length	Std.	Mean Weight	Std.	Sample	Mean Length	Std.	Mean Weight	Std.	Sample	Mean Length	Std.	Mean Weight	Std.	Sample	
Date ^a	(mm)	Error	(g)	Error	Size	(mm)	Error	(g)	Error	Size	(mm)	Error	(g)	Error	Size	
5 22					0	130	14.1	18.3	5.18	8						
5 24					0	132	15.8	19.8	7.10	32						
5 25					0	126	21.0	18.2	8.78	89	140		22.6		1	
5 26	103	10.6	10.0	3.39	25	120	24.6	15.7	10.10	74						
5 27	106	6.2	11.1	1.98	4	127	21.0	17.8	9.24	96						
5 28	101	10.2	9.5	2.40	23	124	21.5	16.1	9.50	76						
5 29	100	9.1	8.6	3.32	29	120	22.4	14.7	8.17	67						
30	104	2.2	10.0	0.86	3	127	20.5	17.1	8.59	97						
31	102	9.6	8.7	2.29	19	125	23.4	16.3	8.72	79						
3	96	12.3	8.3	3.35	83	120	18.0	15.3	6.99	17						
6 4	99	11.9	8.6	3.24	81	112	16.3	12.5	5.40	19						
5 5	100	16.5	7.6	2.97	80	117	22.2	11.2	7.13	15						
6 6	98	9.5	8.1	2.60	39	117	14.0	13.8	4.69	14						
8 8	98	8.9	8.1	2.28	41	115	16.9	12.3	5.31	9						
	***************************************					•										
Totals					427					692					1	
leans	101		9.0			122		15.7			140		22.6			

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 27. Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Egegik River, Bristol Bay, Alaska, 1986.

		Estima	ted Age	I	ĺ	Estimat	ed Age I	I
Date ^a	Mean Length (mm)		stimated Mean Weight (g)	Sample Size	Mean Length (mm)		stimated Mean Weight (g)	Sample Size
5 25 b 5 26 5 27 5 28 5 29 5 30 5 31 6 3 c 6 4 6 5 6 6 6 7 6	101 103 103 101 100 102 102 98 98 97 99	6.4 8.7 7.4 11.3 13.0 6.9 8.5 12.2 14.4 15.6 17.3 15.7 8.7	9.1 9.5 9.5 9.2 8.9 9.3 8.8 8.1 8.0 8.2 8.2	6 44 5 70 145 20 53 115 188 275 262 166 43 151	127 123 126 123 119 124 124 116 117 116 122 117 117	27.7 30.1 26.1 29.6 26.6 29.7 31.0 14.8 17.4 22.1 32.7 18.0 14.7 16.7	17.6 16.1 17.3 16.3 14.6 16.7 16.0 12.7 13.1 12.8 14.7 13.1	304 313 184 274 252 302 317 50 36 99 124 60 15 29
Totals Means	100		8.6	1543	120		14.7	2349

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Length-weight parameters by age group and discriminating length used to separate ages for 25 May through 1 June were; age I a= -10.77 b= 2.81 r^2 = .67 n= 103 age II a= -10.08 b= 2.65 r^2 = .87 n= 610 discriminating length = 108.2

Length-weight parameters by age group and discriminating length used to separate ages for 2 June through 8 June were; age I a= -5.91 b= 1.74 r^2 = .34 n= 282 age II a= -11.22 b= 2.91 r^2 = .69 n= 73 discriminating length = 107.1

Table 28. Mean fork length and weight of sockeye salmon smolt sampled from the Egegik River, Bristol Bay, Alaska, 1939-1986.

			Age	I	Age	II	Age	III	
Year of Migration	Sample Dates	Sample Size	Mean Length	Mean Weight	Mean Length	Mean Weight	Mean Length	Mean Weight	References
1939	~	_	96	-	105	-	-	-	USF&WS (unpublished)
1956	_	386	101	-	116		123	_	n .
1957	-	236	107	-	120	_	130	-	"
1959	-	281	99	_	116	-	123	-	"
1960	_	159	106	_	115	_	140	_	II .
1969	-	67	99	-	119	-	115	-	Paulus (1972)
1977	27-29 May	299	110	11.3	116	13.3	_	-	ADF&G (unpublished)
1978	19-22 May	319	104	10.1	122	15.4	130	18.1	Huttunen (1980)
1981 1	15 May- 6 June	549	105	9.1	122	16.6	128	19.1	Bue (1982)
1982 2	27 May-15 June	881	104	9.2	130	17.1	145	23.5	Bue (1984)
1983 ^a 1	17 May- 9 June	2,631	101	9.3	116	13.6	-	-	Fried and Yuen (in press
1984 ^a :	l0 May-10 June	3,602	106	10.1	112	12.2	134	20.2	Fried et al. (1986)
1985 ^a 2	24 May- 5 June	5,427	106	10.4	123	16.8	138	24.1	Bue (1986)
		Mean	103	9.9	117	14.7	130	20.2	
1986 18	3 May-11 June	1,120	101	9.0	122	15.7	140	22.6	

 $^{^{\}mathrm{a}}$ Age, weight, and length samples pooled with estimated weight by age from length samples.

Table 29. Mean fork length and weight of coho salmon smolt captured in fyke nets, Egegik River, Bristol Bay, Alaska, 1986.

			Age I	Ι		Age III				
Date ^a	Mean Length (mm)	Std. Error	Mean Weigh (g)		Sample Size	Mean Length (mm)	Std. Error	Mean Weight Std. (g) Error	Sample Size	
6 3 6 6	140 140	11.9	25.5 28.1	7.00	1 4	151 164		32.7 50.2	1 1	
-	—							4-17		
Totals Means	140		26.8		5	158		41.5	2	

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 30. Climatological and hydrological observations made at sockeye salmon smolt counting site, Egegik River, Bristol Bay, Alaska, 1986.

	Cloud	Cover ª		Velocity km/h)		Temp.	Mean Water			
Date	0800 hr	2000 h	r 0800 hi	r 2000 hr	0800	2000 2000	Temp. (°C)	Precipitation (cm)	Water Clarity	
5 19	4	4	5-10 W	10 W	0	-	3.0	0	clear	
5 20	4	1	5 SW	10-15 NW	3	5	2.7	0	clear	
5 21	1	1	5-10 NW	5-10 E	2	6	2.2	0	clear	
5 22	4	3	10 E	10-15 E	4	6	2.7	0	clear	
5 23	1	1	3 SE	5 E	5	10	5.7	0	clear	
5 24	1	3	calm	5-10 NW	5	12	4.2	0	clear	
5 25	3	4	5 SE	5-10 E	11	11	4.2	0	clear	
5 26	3	1	5 E	5 W	10	10	4.5	0	clear	
5 27	1	1	5 NW	5-10 W	11	10	5.7	0	clear	
5 28	4	1	5 SW	5-10 E	5	11	5.2	0	clear	
5 29	3	3	5-10 E	10-15 E	5	6	4.7	0	clear	
5 30	4	4	5 E	calm	6	9	7.5	.05	clear	
5 31	4	3	5-10 E	10-20 E	5	7	5.0	.01	clear	
6 1	4	4	10-15 E	-	4	5	3.5	.36	clear	
6 2	4	4	15-20 E	30-35 E	5	6	3.7	.06	clear	
6 3	3	4	40 E	>40 E	9	11	5.0	trace	light brown	
6 4	4	3	10-15 E	10-15 E	5	7	4.5	.01	clear	
6 5	2	1	5 _E	10-15 E	6	5	4.7	0	clear	
6 6	3	4	calm	3 N	6	8	4.0	.02	clear	
6 7	4	3	calm	5 N	8	11	5.2	.02	clear	
6 8	4	4	5 N	10-15 E	7	8	5.0	.01	clear	
6 9	4	3	<u> 5</u>	5 WSW	6	11	5.7	.23	clear	
6 10	3	2	5 E	15-20 E	6	8	4.5	0	clear	
6 11	4	4	5-10 E	5-10 E	6	6	4.0	.30	clear	
6 12	3	-	5 E	-	6	-	4.5	0	clear	

^{1 =} cloud cover not more than 1/10
2 = cloud cover not more than 1/2
3 = cloud cover more than 1/2
4 = completely overcast

^{5 =} fog

Table 31. Water temperatures at sockeye salmon smolt counting site, Egegik River, Bristol Bay, Alaska, 1981-1986.

		Water Temperature		Water Temperature (°C)		e (°C)	
Year	Sample Period	Minimum	Maximum	Mean	Reference		
1981 1982 1983 1984 1985	15 May-8 June 15 May-16 June 18 May-10 June 17 May-11 June 17 May-12 June	5.0 0.0 5.0 5.0 2.5	9.0 5.0 9.5 10.0 7.5	7.3 2.9 7.0 7.6 4.2	Bue (1982) Bue (1984) Fried et al. (1987) Fried et al. (1986) Bue (1986)		
1986	Mean 23 May-28 June	3.5	8.2 7.5	5.8 7.2			

Table 32. Sonar counts recorded from two 10 transducer arrays at the sockeye salmon smolt counting site on the Ugashik River, Bristol Bay, Alaska, 1986.

		Sonar Counts	
	Transdu	cer Array	
Date ^a	Inshore	Center	Total
5 21 5 22 5 23 5 24 5 25 5 27 5 29 5 31 1 2 3 4 5 6 7 8 9 10 6 11	3,749 3,749 3,749 3,749 362 14,018 4,841 74,060 11,804 7,308 61,961 1,971 708,543 353,634 242,958 173,767 104,784 35,800 5,636 710 2,405 55,799 2,583 49,204	680 680 599 13,940 1,583 92,694 3,440 1,554 93,099 93,226 234,541 197,638 361,860 325,456 289,162 252,867 257,397 14,037 183,400 205,773 30,349 199,206	4,429 4,429 961 27,958 6,424 166,754 15,244 8,862 155,060 95,197 943,084 551,272 604,818 499,223 393,946 288,667 263,033 14,747 185,805 261,572 32,932 248,410
6 12 6 13	107 1,267 15,601	4,806 1,609 37,303	4,913 2,876 52,904
Total	1,932,872	2,896,219	4,829,091
Percent	40.03	59.97	

 $^{^{\}rm a}$ $\,$ Sample day began at 1200 hours and ended at 1159 hrs the next calendar day.

Table 33. Daily number of sockeye salmon smolt migrating seaward in the Ugashik River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

	Ag	e I	Age	II	A	ll Ages
Date ª	Number	Percent	Number	Percent	Daily Total	Cumulative Total
5 21	38,643	79.88	9,733	20.12	48,376	48,376
5 22	9,871	79.88	2,486	20.12	12,357	60,733
5 23	275,705	79.88	69,444	20.12	345,149	405,882
5 24	58,014	79.88	14,612	20.12	72,626	478,508
5 25	1,675,877	79.88	422,116	20.12	2,097,993	2,576,501
5 26	105,992	71.38	42,498	28.62	148,490	2,724,991
5 27 5 28	60,479	71.38 71.38	24,249	28.62 28.62	84,728 1,718,411	2,809,719 4,528,130
5 28 5 29	1,226,602 1,028,644	79.70	491,809 262,001	20.30	1,710,411	5 ,818,775
5 30	6,171,221	67.50	2,971,328	32.50	9,142,549	14,961,324
5 31	3,409,500	64.73	1,857,764	35.27	5,267,264	20,228,588
6 1	3,802,974	63.74	2,163,411	36.26	5,966,385	26,194,973
6 2	3,185,304	63.74	1,812,035	36.26	4,997,339	31,192,312
6 3	2,569,494	63.74	1,461,717	36.26	4,031,211	35,223,523
6 4	1,926,819	63.74	1,096,116	36.26	3,022,935	38,246,458
6 5	2,457,260	75.87	781,517	24.13	3,238,777	41,485,235
6 6	136,773	75.87	43,499	24.13	180,272	41,665,507
6 7 6 8	1,739,769	75.87	553,323 663,645	24.13 21.70	2,293,092 3,058,273	43,958,599 47,016,872
6 8 6 9	2,394,628 578,695	78.30 93.59	39,634	6.41	618,329	47,635,201
6 10	4,250,687	93.91	275,654	6.09	4,526,341	52,161,542
6 11	71,917	86.06	11,649	13.94	83,566	52,245,108
6 12	34,310	86.06	5,557	13.94	39,867	52,284,975
6 13	680,974	86.06	110,304	13.94	791,278	53,076,253
Total	37,890,152	71.39	15,186,101	28.61	53,076,253	

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 34. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolt, Ugashik River, Bristol Bay, Alaska, 1986.

Date ^a	Mean Weight of Smolt (g)	Smolt per Count		
5 21 5 22	6.5 6.5	6.4 6.4		
5 23	6.5	6.4		
5 24	6.5	6.4		
5 25	6.5	6.4		
5 26 5 27	7.5 no sample	5.5 5.5		
5 28	7.5	5.5		
5 29	6.9	6.0		
5 30	7.6	5.5		
5 31 6 1 6 2 6 3 6 4 6 5 6 6 7 6 8 6 9	7.9 8.1	5.3		
6 1 6 2 6 3 6 4 6 5 6 6 7	no sample	5.1 5.1		
6 3	no sample	5.1		
6 4	8.1	5.1		
6 5	7.1	5.8		
6 6	7.1 7.1	5.8 5.8		
6 8	7.1	5.8		
	5.9	7.0		
6 10	5.8	7.2		
6 11	no sample	6.2		
6 12 6 13	no sample 6.7	6.2 6.2		

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 35. Sockeye salmon spawning escapement, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1979-1984 brood years, Ugashik River, Bristol Bay, Alaska.

		Number of Smolt Produced							
Brood Year	Total Spawning Escapement	Age I	Age II	Age III	Total	Per Spawner			
1979	1,700,904	_	-	0	_				
1980	3,321,384	_	12,736,379	26,384	-				
1981	1,326,762	31,297,432 (27)	82,656,993 (73)	. 0	113,954,425	85.89			
1982	1,157,526	75,491,249 (78)	21,407,762 (22)	0	96,899,011	83.71			
1983	1,000,614	12,693,628	15,186,101		, ,				
1984	1,241,418	37,890,152	, ,						

Table 36. Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1979-1984 brood years, Ugashik River, Bristol Bay, Alaska.

Brood Spawning			Age I		Age II			Age III		
		Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt
979	1,700,904	-	3,963,182		_	2,004,153		0	0	
980	3,321,384	-	3,463,594		12,736,379	4,193,490	0.33	26,384	2,548	0.10
981	1,326,762	31,297,432	4,171,255	0.13	82,656,993	3,179,851	0.04	0	1,187	0.00
982	1,157,526	75,491,249	1,140,372	0.02	21,407,762	605,875	0.03 ^b	0	-,	
983	1,000,614	12,693,628	610,066	0.05 b	15,186,101	5,046	0.00 b			
984	1,241,418	37,890,152	57	0.00 ^b						

Includes interception estimates, Yuen and Nelson (1987)
 Future adult returns will increase these values.

Table 37. Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Ugashik River, Bristol Bay, Alaska, 1986.

		Age I					Age II				
Date ª	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size	Mean Length (mm)	Std. Error	Mean Weight (gm)	Std Error	Sample Size	
5 21 5 22 5 23 5 24 5 25 5 26 5 28 5 29 5 30 5 31 6 4 6 5 6 7 6 8 6 9 6 10 6 14	82 83 87 88 90 89 90 87 85 89 86 83 85 84 85	22.9 16.5 23.3 15.5 18.0 14.5 12.3 16.6 16.8 10.7 11.7 13.6 13.8 10.9 14.0 12.6 14.3 12.7	4.7 5.5.8 6.3 6.3 6.3 6.3 5.5 5.6 5.7 5.6 6.7 5.6	3.70 3.58 5.05 3.15 3.75 3.51 2.59 3.62 4.25 3.13 2.33 3.51 3.11 2.34 3.18 3.01 2.80 3.03	36 26 101 69 57 40 38 76 28 39 53 87 64 85 63 95 93 86	108 118 112 115 112 111 110 108 115 115 107 109 115 122 116 123 116 119	5.4 4.7 10.8 15.1 11.9 7.3 16.7 10.1 17.3 14.4 6.8 15.4 12.5 9.0 12.4 3.8 10.6 11.5	10.2 12.8 12.0 12.3 11.3 11.2 11.3 10.7 12.4 12.6 10.4 10.9 12.8 15.6 13.5 14.8 13.4	1.52 2.08 3.48 5.53 3.63 2.30 4.93 2.81 6.04 4.89 2.01 4.06 4.09 3.33 4.23 2.05 4.11 4.72	8 4 36 31 43 8 58 23 72 60 11 13 36 15 37 57	
Totals Means	87		5.8		1074	114		10.9	-	481	

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 38. Mean fork length and estimated weight, by estimated age of sockeye salmon smolt length frequencies, Ugashik River, Bristol Bay, Alaska, 1986.

-		Estim	ated Age	I		Estima	ted Age	II	
	Mean		stimated Mean		Mean		Estimated Mean		
Date ^a	Length (mm)	Std. Error	Weight (g)	Sample Size	Length (mm)	Std. Error	Weight (g)	Sample Size	
5 23 b	86	11.5	5.6	14	110	4.5	11.1	4	
5 24 5 25	85 87	8.9	5.5	9	110	8.4 20.2	11.3	5	
5 25	87 87	20.5 19.2	5.8 5.8	269 200	111 112	20.2	11.6 11.9	74 96	
5 29	88	18.5	5.9	284	110	14.5	11.2	93	
5 30	85	22.2	5.6	354	112	18.6	11.7	138	
5 31	86	19.4	5.6	197	113	18.9	12.0	116	
6 1	86	14.9	5.6	89	112	15.1	11.8	57	
6 4	88	16.6	6.0	131	116	22.1	13.0	169	
6 5 6 6	85 86	10.2 12.8	5.4 5.7	47 101	115 115	14.7 19.8	12.7 12.7	32 86	
6 7	83	20.1	5.1	287	116	12.0	12.7	27	
6 8	85	17.0	5.4	246	117	18.6	13.5	67	
6 9	85	17.7	5.5	341	113	11.1	12.0	21	
6 10	85	19.7	5.4	360	111	11.2	11.4	20	
6 13	85	16.5	5.4	258	119	26.3	14.2	65	
Totals	- 			3,187				1,070	
Means	86		5.6		113		12.2		

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Length-weight parameters by age group and discriminating length used to separate ages for 23 May through 13 June were; age I a= -11.34 b= 2.93 r^2 = .81 n= 1101 age II a= -10.85 b= 2.82 r^2 = .86 n= 473 discriminating length = 100.86

Table 39. Mean fork length and weight of sockeye salmon smolt sampled from the Ugashik River, Bristol Bay, Alaska, 1958-1986.

			Age	e I	Age	II	Age	e III	
Year of Migration		Sample Size	Mean Length	Mean Weight	Mean Length	Mean Weight	Mean Length	Mean Weight	References
1958	-	_	93	6.4	112	11.7	_		Pella and Jaenicke (1978)
1959	_	-	90	6.1	120	13.5	_	_	"
1960	_	_	90	6.6	104	11.0	-	_	***
1961	_	_	90	6.7	112	12.2	_	_	*1
1962 12	May-28 June	1,070	88	6.1	112	12.3	-	_	Jaenicke (1963)
	May-26 June	921	90	6.1	104	9.6	-	-	Nelson and Jaenicke (1965)
	May-20 June	4,042	92	6.9	118	12.7	_	-	Nelson (1965)
1965 13	May-20 June	3,296	94	6.9	114	12.5	_	-	Nelson (1966)
1967 15	May-12 June	966	88	6.0	113	12.2	-	-	Nelson (1969)
1968 13	May-24 June	6,727	93	6.5	113	10.7	-	_	Siedelman (1969)
1969 23	May- 6 June	567	97	7.5	121	14.5	-	-	Schroeder (1972a)
1970 15	May-10 June	907	97	7.7	125	15.9	-	_	Schroeder (1972b)
1972 28	May-20 June	615	81	5.0	112	11.2	129	14.3	Schroeder (1974a)
1973 17	May-12 June	1,189	93	7.2	113	11.9	132	20.1	Schroeder (1974b)
1974 17	May-17 June	355	94	7.4	119	13.6	-	-	Schroeder (1975)
1975	3-13 June	-	96	7.2	116	13.0	125	16.7	Sanders (1976)
1982	6- 8 June	512	88	6.3	113	13.0	138	22.5	Eggers (1984)
1983 21	May-16 June	9,502	89	7.6	111	13.2	-	-	Fried et al. (1987)
1984 23	May-16 June	4,810	87	6.8	102	10.3	103	11.7	Fried et al. (1986)
1985 22	May-17 June	3,473	94	8.3	107	11.8	-	-	Bue (1986)
			_					·····	
		Mean	91	6.8	113	12.3	125	17.1	
1986 21	. May-14 June	1,555	87	5.8	114	10.9	-	_	

Climatological and hydrological observations made at sockeye salmon smolt counting site, Ugashik River, Bristol Bay, Alaska, Table 40. 1986.

	Cloud Cover a		Wind Velocity (km/h)			Water		
Date	0800 hr	2000 hr	0800 hr	2000 hr	Air Temp. (°C)	Temp.	Water Clarity	
5 20	4	3	25 W	15 W			clear	
5 21	1	1	5 SW		11.0- 2.0	2.0	clear	
5 22		3 1	25 E	30 N	6.0- 3.0	4.0-5.0	clear	
5 23	2 2 1		10 NE	10 N	13.0- 6.0	4.0-4.5	clear	
5 24	1	1 2 1	calm	10 SW	16.0- 1.0	5.0-6.0	clear	
5 25	3	2	5 S	10 E	9.0- 0.0	5.0-5.0	clear	
5 26	3 3 1	1	2 W	10 W	2.0- 5.0	5.0-5.0	clear	
5 27	1	1	10 SW	20 S	13.0- 4.0	4.5-6.5	clear	
5 28	4	1	5 S	calm	11.0- 2.0	3.5-5.0	clear	
5 29	3	3 4	15 NE	20 E	10.0- 3.0	6.0-7.0	clear	
5 30	4	4	5 E	calm	14.0- 4.0	5.0-5.0	clear	
5 31	4	4 3	5 NE		9.0- 4.0	5.5-7.0	clear	
6 1	4	3	2 W	5 S	9.0- 4.0	7.0-6.0	clear	
6 2	4		30 E	35 NE	10.0- 3.0	6.0-5.0	turbid	
6 3		4	45 E	35 E	6.0- 3.0	6.0-5.0	turbid	
6 4	4 3	4 3 3 4	5 E	5 E	10.0- 4.0	5.0-7.0	L. Brow	
6 5	1	3	1 E	15 E	13.0- 4.0	6.0-8.0	clear	
6 6	3		20 N	2 N	10.0- 6.0	7.0-6.0	L. Brow	
6 7	4	4	2 N	calm	11.0- 5.0	5.0-5.0	clear	
6 8 6 9	3	4 4 3	1 SW	10 W	10.0- 5.0	5.5-6.0	clear	
69	4	3	calm		10.0- 4.0	5.5-5.5	clear	
6 10	4		5 NE	20 NE	15.0- 5.0	7.0-5.0	clear	
6 11	4		15 E			7.0	clear	
6 12	4	4	30 NE	15 NE	9.0- 5.0	6.0-6.5	L. Brow	
6 13	3		10 NE	15 NE	10.0- 5.0	6.0-7.0	clear	
6 14	4	3	calm	5 SW	13.0- 5.0	6.0-7.0	clear	

 $^{1 = \}text{cloud cover not more than } 1/10$ 2 = cloud cover not more than 1/2

^{3 =} cloud cover more than 1/2

^{4 =} completely overcast

^{5 =} fog

Table 41. Water temperatures at sockeye salmon smolt counting site, Ugashik River, Bristol Bay, Alaska, 1983-1986.

		Water T	emperatur	e (°C)	
Year	Sample Period	Minimum	Maximum	Mean	Reference
1983 1984 1985	23 May-11 June 20 May-17 June 17 May- 9 June	6.0 4.8 -1.0	8.5 8.5 7.0	7.3 6.3 4.3	Fried et al. (1987) Fried et al. (1986) Bue (1986)
	Mean	3.3	8.0	6.0	
1986	23 May-28 June	2.0	7.0	5.6	

Table 42. Sonar counts recorded from four 10 transducer arrays at the sockeye salmon smolt counting site on the Wood River, Bristol Bay, Alaska, 1986.

			Sonar Count	S	
		Transdu	cer Array		
Date ^a	I	II	III	IV	Total
5 27 5 28 5 29 5 31 1 2 3 4 5 6 7 8 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1,087 503 354 2,475 6,569 2,446 2,250 830 1,595 1,419 1,694 1,084 1,235 2,431 2,413 5,638 2,882 1,907 3,828 11,788 12,137 7,799 10,659 3,363 3,181 2,970 8,188 9,762 1,846 4,103 16,787 8,057 1,868	238 584 1,166 1,921 1,828 2,442 4,768 1,136 1,244 2,248 2,636 1,623 1,640 3,890 5,086 14,098 9,902 3,206 4,028 12,680 15,872 13,364 27,416 7,816 4,036 8,682 18,902 6,634 3,798 6,335 9,690 14,078 4,102	454 1,109 971 1,436 1,646 1,968 1,550 1,038 2,646 2,208 1,880 1,926 1,694 2,520 2,884 6,146 5,160 1,518 2,018 2,206 5,042 6,618 13,997 5,762 2,266 5,177 17,732 4,500 1,309 3,011 4,012 9,910 2,670	348 969 1,010 842 940 1,810 1,266 1,228 2,237 1,151 708 1,487 1,702 4,036 3,968 4,238 10,032 1,390 1,982 1,698 2,994 4,377 8,944 8,034 2,306 3,166 8,509 2,100 1,900 3,886 3,614 2,649	2,127 3,165 3,501 6,674 10,983 8,666 9,834 4,232 7,722 7,026 6,918 6,120 6,271 12,877 14,351 30,120 27,976 8,021 11,856 28,372 36,045 32,158 61,016 24,975 11,789 19,995 53,331 22,996 7,965 15,349 34,375 35,659 11,289

Table 42. (Page 2 of 2)

			Sonar Coun	ts							
		Transducer Array									
Date ^a	I	II	III	IV	Total						
6 29 6 30 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 10 7 11 7 12 7 13 7 14 7 15	13,294 11,859 11,940 11,886 9,165 5,821 2,579 2,625 2,519 1,976 4,993 4,255 5,937 4,862 6,345 4,642 299	16,443 18,454 16,046 11,322 10,742 8,294 3,472 5,226 4,145 5,290 3,652 4,166 4,572 6,574 7,046 4,532 668	11,246 12,784 9,211 6,333 4,908 2,810 3,320 3,594 2,399 2,946 2,694 2,294 3,582 4,224 2,990 2,726 936	3,791 7,018 8,278 8,154 2,238 3,146 3,010 2,352 3,858 2,494 2,734 2,388 3,064 3,866 2,698 2,912 1,148	44,774 50,115 45,475 37,695 27,053 20,071 12,381 13,797 12,921 12,706 14,073 13,103 17,155 19,526 19,079 14,812 3,051						
Total Percent	250,145	347,733	203,981	159,682	961,541						

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 43. Percentage of total unexpanded sonar counts recorded over each array, Wood River, Bristol Bay, Alaska, 1975-1986.

	Pe	ercentage of	Sonar Count	S	
		Transduce	r Array		
Year	I	II	III	IV	References
1975 a 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985	68.6 49.0 36.0 28.6 17.0 34.1 39.2 38.2 31.6 23.9 34.2	31.4 30.2 24.4 29.7 27.1 35.2 24.8 31.3 29.9 36.7 36.3	11.7 20.8 25.6 33.1 20.5 24.9 15.9 23.5 22.2 18.5	9.1 18.8 16.1 22.8 10.2 11.1 14.6 15.0 17.2 11.0	Krasnowski (1976) Krasnowski (1977) Newcome (1978) Clark and Robertson (1980) Bucher (1980) Bucher (1981) Bucher (1982) Bucher (1984) Bucher (1987) Bucher (1986) Bucher (1986)
Mean ^b	33.2	30.6	21.7	14.6	
1986	34.2	36.3	18.5	11.0	

Only two transducer arrays used.
 Data for 1975 omitted.

Table 44. Velocity correction factors used at Wood River, Bristol Bay, Alaska, 1986.

Date	Array II	Array III	Array IV
6 1	1.00	.93	.88
6 6	1.07	1.15	1.19
6 11	1.00	1.07	1.11
6 18	1.12	1.16	1.22
6 24	1.09	1.11	1.13
6 30	1.00	1.00	1.00
7 03	1.00	1.09	1.07
7 08	1.00	1.02	1.09

Table 45. Daily number of sockeye salmon smolt migrating seaward in the Wood River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

		Age I			Age II		All Ages		
Date	a Number	Percent	Cumulative Total	Number	Percent	Cumulative Total	Daily Total	Cumulative Total	
5 27	61,030	98.68	61,030	814	1.32	814	61,845	61,845	
5 28		98.68	154,914	1,253	1.32	2,067	95,137	156,982	
5 29	100,340	98.68	255,255	1,339	1.32	3,406	101,680	258,662	
5 30	•	98.68	432,062	2,359	1.32	5,766	179,166	437,829	
5 31	298,205	98.68	730,268	3,980	1.32	9,747	302,186	740,015	
5 1	240,826	98.68	971,095	3,214	1.32	12,961	244,040	984,056	
5 2		98.68	1,218,300	3,299	1.32	16,260	250,505	1,234,561	
5 3	122,012	98.68	1,340,312	1,628	1.32	17,889	123,640	1,358,202	
5 4	222,314	98.68	1,562,627	2,967	1.32	20,856	225,281	1,583,484	
5 5	178,972	98.68	1,741,600	2,388	1.32	23,245	181,361	1,764,845	
6	176,202	95.07	1,917,803	9,127	4.93	32,373	185,330	1,950,176	
5 7		95.07	2,102,765	9,581	4.93	41,954	194,543	2,144,719	
8 6		95.07	2,296,217	10,021	4.93	51,975	203,472	2,348,192	
5 9	411,281	95.07	2,707,498	21,304	4.93	73,280	432,585	2,780,778	
5 10		97.51	3,196,440	12,485	2.49	85,765	501,427	3,282,206	
5 11	813,764	97.51	4,010,205	20,780	2.49	106,545	834,544	4,116,751	
5 12	956,536	97.51	4,966,741	24,425	2.49	130,971	980,962	5,097,713	
5 13	226,449	97.51	5,193,190	5,782	2.49	136,754	232,232	5,329,945	
5 14	317,112	97.47	5,510,303	8,247	2.54	145,002	325,360	5,655,305	
5 15	655,530	97.47	6,165,834	17,049	2.54	162,052	672,580	6,327,886	
5 16	858,273	97.47	7,024,107	22,323	2.54	184,375	880,596	7,208,482	
5 17	812,314	97.47	7,836,422	21,127	2.54	205,503	833,442	8,041,925	
18	1,829,523	98.76	9,665,945	23,064	1.25	228,567	1,852,588	9,894,513	
5 19	916,205	98.76	10,582,151	11,550	1.25	240,118	927,756	10,822,269	
20	383,508	98.76	10,965,659	4,834	1.25	244,953	388,343	11,210,612	
5 21	608,133	98.76	11,573,792	7,666	1.25	252,620	615,799	11,826,412	
5 22	1,656,802	98.51	13,230,595	25,145	1.50	277,765	1,681,948	13,508,360	

Table 45. (Page 2 of 2)

		Age I			Age II		All Ages		
Date ª	Number	Percent	Cumulative Total	Number	Percent	Cumulative Total	Daily Total	Cumulative Total	
6 23	680,393	98.51	13,910,989	10,326	1.50	288,091	690,719	14,199,080	
6 24	226,504	98.51	14,137,493	3,437	1.50	291,529	229,941	14,429,022	
5 25	436,982	98.51	14,574,476	6,632	1.50	298,161	443,614	14,872,637	
5 26	911,072	97.25	15,485,548	25,738	2.75	323,899	936,811	15,809,448	
5 27	893,384	97.25	16,378,933	25,239	2.75	349,139	918,623	16,728,072	
5 28	324,885	97.25	16,703,818	9,178	2.75	358,317	334,063	17,062,135	
5 29	1,119,669	97.25	17,823,488	31,632	2.75	389,949	1,151,302	18,213,437	
30	1,266,677	97.29	19,090,165	35,283	2.71	425,232	1,301,960	19,515,398	
' 1	1,214,894	97.29	20,305,060	33,840	2.71	459,073	1,248,735	20,764,134	
2	1,057,973	97.29	21,363,034	29,469	2.71	488,543	1,087,443	21,851,577	
7 3	691,135	97.29	22,054,170	19,251	2.71	507,794	710,387	22,561,964	
7 4	569,389	99.77	22,623,559	1,312	.23	509,107	570,702	23,132,667	
5	388,067	99.77	23,011,627	894	.23	510,001	388,962	23,521,629	
6	394,375	99.77	23,406,003	909	.23	510,911	395,284	23,916,914	
7 7	422,460	99.77	23,828,463	973	.23	511,884	423,433	24,340,348	
8	391,300	97.69	24,219,764	9,232	2.30	521,117	400,533	24,740,881	
7 9	461,152	97.69	24,680,916	10,880	2.30	531,997	472,032	25,212,914	
7 10	419,701	97.69	25,100,617	9,902	2.30	541,899	429,603	25,642,517	
7 11	553,379	97.69	25,653,997	13,056	2.30	554,956	566,436	26,208,954	
7 12	627,348	97.69	26,281,346	14,801	2.30	569,757	642,149	26,851,104	
7 13	584,293	97.69	26,865,639	13,785	2.30	583,543	598,079	27,449,183	
7 14	484,241	97.69	27,349,880	11,425	2.30	594,968	495,666	27,944,849	
15	116,803	97.69	27,466,684	2,755	2.30	597,724	119,559	28,064,408	
「otal	27,466,684	97.87		597,724	2.13		28,064,408		

 $^{^{\}mathrm{a}}$ Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 46. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Wood River, Bristol Bay, Alaska, 1986.

Date ^a	Mean Weight of Smolt (g)	Smolt per Count
5 27 5 28	no sample no sample	7.14 7.14
5 29	5.81	7.14
5 30 5 31	5.81 5.81	7.14 7.14
6 1	5.81	7.14
6 1 6 2 6 3 6 4 6 5 6 6 6 7	no sample 5.81	7.14 7.14
6 4	5.81	7.14
6 5 6 6	5.81 6.07	7.14 6.83
6 7	6.07	6.83
6 8 6 9	6.07 6.07	6.83 6.83
6 10	5.59	7.42
6 11 6 12	5.59 5.59	7.42 7.42
6 13	5.59	7.42
6 14 6 15	5.94 5.94	6.99 6.99
6 16	5.94	6.99
6 17 6 18	5.94 5.59	6.99 7.42
6 19	5.59	7.42
6 20 6 21	5.59 5.59	7.42 7.42
6 22	5.54	7.49
6 23 6 24	5.54 5.54	7.49 7.49
5 25	5.54	7.49
6 26 6 27	6.05 6.05	6.86
5 28	6.05	6.86 6.86
5 29 5 30	6.05 5.70	6.86
	5.70	7.28 7.28
7 1 7 2 7 3 7 4	5.70 5.70	7.28
7 4	5.67	7.28 7.32

⁻Continued-

Table 46. (Page 2 of 2)

Date ^a	Mean Weight of Smolt (g)	Smolt per Count		
7 5	5.67	7.32		
76	5.67	7.32		
7 7	5.67	7.32		
7 8	5.20	7.98		
79	5.20	7.98		
7 10	5.20	7.98		
7 11	5.20	7.98		
7 12	5.20	7.98		
7 13	5.20	7.98		
7 14	5.20	7.98		
7 15	no sample	7.98		

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 47. Sockeye salmon spawning escapements, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1972-1984 brood years, Wood River, Bristol Bay, Alaska.

	Total		Numb	er of Smolt F	Produc	ed	
Brood Year	Spawning Escapement	Age I		Age II		Total	Per Spawner
1972	430,602	-		5,900,000		_	_
1973	330,474	27,950,000	(85)	4,800,000	(15)	32,750,000	99.24
1974	1,708,836	101,400,000	(89)	12,550,000	(11)	113,950,000	66.64
1975	1,270,116	60,750,000	(88)	8,400,000	(12)	69,150,000	54.45
1976	817,008	46,600,000	(90)	5,127,868	(10)	51,727,868	63.31
1977	561,828	60,838,182	(97)	1,993,345	(3)	62,831,527	111.83
1978	2,267,238	46,302,587	(58)	33,196,940	(42)	79,499,527	35.06
1979	1,706,352	64,330,507	(92)	4,706,853	(8)	69,037,360	40.46
1980	2,969,040	32,354,984	(89)	4,133,901	(11)	36,488,885	12.29
1981	1,233,318	19,594,247	(93)	1,378,417	(7)	20,972,664	17.01
1982	976,470	22,332,474	(83)	4,692,859	(17)	27,025,333	27.68
1983	1,360,968	31,948,110	(98)	597,724	(2)	32,545,834	23.91
1984	1,002,792	27,466,684	` ,	'-	` -,	-	

Table 48. Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt, for 1972-1984 brood years, Wood River, Bristol Bay, Alaska.

			Age I		Age II			
Brood Year	Total Spawning Escapement	Number of Smolt	Adult Returns	Adult Returns per Smolt	Number of Smolt	Adult Returns	Adult Returns per Smolt	
1972	430,602	_	1,430,065		5,900,000	59,353	0.01	
1973	330,474	27,950,000	1,364,992	0.05	4,800,000	118,476		
1974	1,708,836	101,400,000	4,661,537	0.05	12,550,000	496,546		
1975	1,270,116	60,750,000	3,617,378	0.06	8,400,000	1,141,143		
1976	817,008	46,600,000	4,895,420	0.11	5,127,868	867,507	0.17	
1977	561,828	60,838,182	3,399,952	0.06	1,993,345	116,606	0.06	
1978	2,267,238	46,302,587	2,546,030	0.05	33,196,940	742,252	0.02	
1979	1,706,352	64,330,507	4,497,413	0.07	4,706,853	46,750	0.01	
1980	2,969,040	32,354,984	1,585,416	0.05	4,133,901	187,961	0.05	
1981	1,233,318	19,594,247	1,815,951	0.09	1,378,417	84,629	0.06	
1982	976,470	22,332,474	505,649	0.02 a	4,692,859	466	0.00	
1983	1,360,968	31,948,110	1,225	0.00 a	597,724	-		
1984	1,002,792	27,466,684	· -			_		

^a Future adult returns will increase these values.

			Age I					Age II		
Date	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size
5 29	87	.6	5.1	.13	34	104		9.6		1
5 30	85	1.1	4.7	.26	8					0
5 31	87	.7	5.8	.16	34	82		4.4		1 0 7 0 1 4
6 1	84	4.0	4.7	.70	2	109	3.5	11.9	.92	7
6 3 6 4 6 5 6 6 7 6 8 6 9	87	.3 3.0	6.1 5.8	.06 1.20	232 2	109	3.3	11.5	. 32	Ó
6 4 6 5	90 87	.3	8.2	2.32	173	85		5.1		ĺ
6 6	87 87	.4	6.0	.46	121	102	5.6	9.4	1.59	4
6 7	88	.5	5.8	.10	110	110	2.8	11.6	.85	10
6 8	86	.3	5.8	.08	115	110	4.0	11.8	1.12	5
6 9	87	.4	5.7	.08	120	105	5.7	10.7	1.68	5
6 10	87	.4 .3 .3	5.6	.07	119	112	3.0	11.1	. 20	2
6 11	85	.3	5.2	.07	117	0.5	2.7	7 5	.94	0
6 12	88	. 4	5.8	.10	111	95 85	3.7	7.5 4.6	. 94	1
6 13	86	.3	5.6 6.0	.08 .08	122 113	95	3.5	7.6	.75	2
6 14 6 15	87 87	. 4 . 4	5.8	.08	110	97	2.4	8.3	.59	9
6 15 6 16	87 87	.3	6.1	.07	118	90	2.,	7.1		10 5 2 0 9 1 2 9
6 17	85	.3	5.7	.08	118					
6 18	85	.3	5.8	.08	119	101		9.0		1
6 19	83	.3	5.4	.07	121					0
6 20	84	.3	5.2	.07	119	84	1.0	5.5	.20	2
6 21	86	.5	5.9	.10	117	105	12.3	9.4	2.42	3
6 22	87	.5	5.8	.11	115	95	6.0	7.3	1.35	2
6 23	84	. 4	5.2	.09	112	100	.0	8.9 9.6	.55 .35	2
6 24	86	.5 .3	5.8 5.2	.11 .08	116 119	102 92	4.5	6.7	.55	0 1 0 2 3 2 2 2 1
6 25	83	. 3	5.2	.00	113	. 36		0.,		•

Table 49. (Page 2 of 2)

	Age I						Age II					
Date	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size		
6 26 6 27	87 87	.5 .5	5.9 6.0	.10	117 118	100 107	10.5	9.1 12.0	2.65	2 1		
6 28	87	. 4	5.8	.10	114	106	2.3	10.4	.72	4		
6 29	88	.4	6.1	.11	112	105	4.0	10.4	1.12	6		
6 30	86	. 4	5.5	.09	116	106	3.4	10.0	.75	6 4		
7 1	91	.6	6.6	. 14	112	106	2.7	10.3	.87	8 0		
7 2	84	. 4	5.3	.09	120					0		
7 3	83	.4	5.0	.08	118	102		9.1		1		
7 4	83	. 4	5.4	. 08	119					0		
7 5	86	. 4	5.7	.09	120					0 0 1 4 1 2 4 1 2 3		
7 6 7 7	85 85	.5	5.8 5.6	.11	120 108	100		0.4		U		
7 8	89	. 5 E	6.7	.10 .12	108	100	9.2	9.4 13.7	3.31	1		
7 9	89	.5 .5 .5	6.7	.12	114	111 107	9.2	9.6	3.31	4		
7 10	89	.5	7.0	.12	119	107	6.0	8.1	2.80	2		
7 11	92	.5	7.4	.12	116	107	1.9	8.8	2.48	4		
7 12	92	.8	7.6	.20	66	102	1.3	8.7	L. 10	i		
7 13	91	1.0	7.2	.28	27	102	7.5	9.5	1.60	2		
7 14	90	.5	7.0	.13	117	116	3.8	13.5	1.28	3		
Totals					4,888					115		
100013					7,000					113		
Means	87		5.9			101		9.2				

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 50. Age composition of total migration, and mean fork length (mm) and weight (g) by age class, for sockeye salmon smolt, Wood River, Bristol Bay, Alaska, 1951-1986.

		Age I			Age II			
Year of Migration	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)		References
1951 ª	80.0	91	_	20.0	_	_		Univ Washington (unnuh)
1952	99.0	87		1.0	_	_	_	Univ. Washington (unpub.)
1953	95.3	86	_	4.7	103	_	_	11
1954	95.8	87	-	4.2	107	_	_	II .
1955	98.0	85	_	2.0	102	_	-	11
1956	78.4	82	_	21.6	95	_	_	11
1957	80.7	77	-	19.3	93	_	-	11
1958	65.0	82	-	35.0	102	_	_	II .
1959	93.5	88	_	6.5	105	_	_	#
1960	99.4	88		0.6	114	_	_	Tf .
1961	93.0	82	_	7.0	102	_	_	Church (1963)
1962	86.0	80	-	14.0	98	-	_	Church and Nelson (1963)
1963	84.3	83	_	15.7	102	_	_	Nelson (1964)
1964	98.8	84	_	1.2	104	_	_	Nelson (1965)
1965	92.0	86	-	8.0	106	_	_	Nelson (1966)
1966	94.3	77	_	5.7	101		-	Siedelman (1967)
1975 ^b	86.0	83	-	14.0	98	_	33,850,000	Krasnowski (1976)
1976	95.5	84	_	4.5	95	_	106,200,000	Krasnowski (1977)
1977	82.9	71	3.5	17.1	98	9.3	73,300,000	Newcome (1978)
1978	84.7	79	-	15.3	90	-	55,000,000	Clark and Robertson (1980
1979	92.2	90	7.6	7.8	100	10.1	65,966,050	Bucher (1980)
1980	96.0	78	4.0	4.0	95	6.8	48,295,932	Bucher (1981)
1981	66.1	88	6.3	33.9	96	8.4	97,527,446	Bucher (1982)
1982	87.3	79	4.7	12.7	98	8.4	37,061,837	Bucher (1984)

Table 50. (Page 2 of 2)

	Age I				Age II			
Year of Migration	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Percent of Total Estimate	Mean Length (mm)	Mean Weight (g)	Total Estimate	References
1983	82.6	86	6.5	17.4	98	9.2	23,728,252	Bucher (1987)
1984	94.2	92	7.8	5.8	97	8.7	23,710,947	Bucher (1986)
1985	87.2	92	7.2	12.8	91	7.1	36,640,969	Bucher (1986)
	Mean	80	5.4		96	8.7	54,661,948	
1986	97.9	92	7.2	2.1	91	7.1		

Fyke net catches used to index abundance of smolt, 1951-1966.
 Sonar equipment used to estimate numbers of smolt, 1975-1985.

Table 51. Estimated infection by the cestode *Triaenophorus* crassus of Age I and Age II sockeye salmon smolt by 5 day periods, Wood River, Bristol Bay, Alaska, 1986.

	Α	ge I	Age II		
Sample period	Number Examined	Percent Infected	Number Examined	Percent Infected	
5 29-6 3	310	27.7	9	44.4	
6 4-6 8	521	35.5	20	40.0	
6 9-6 13	589	33.8	17	64.7	
6 14-6 18	578	42.4	13	46.2	
6 19-6 23	584	39.4	9	66.7	
6 24-6 28	584	43.7	10	20.0	
6 29-7 3	578	40.8	19	47.4	
7 4-7 8	581	39.9	5	20.0	
7 9-7 13	446	32.5	10	70.0	
7 14-7 14	117	26.5	3	.0	
5 29-7 14	4888	40.8	115	45.6	

Table 52. Infection of sockeye salmon smolt by the cestode Triaenophorus crassus, Wood River, Bristol Bay, Alaska, 1978-1986.

		Percent	Infected	
Year		Age I	Age II	References
1978 1979 1980 1981 1982 1983 1984 1985		15.1 10.0 11.1 28.2 10.0 43.1 41.1 35.7	40.5 30.8 17.3 35.6 21.2 73.6 45.7 41.5	Clark and Robertson (1980) Bucher (1980) Bucher (1981) Bucher (1982) Bucher (1984) Bucher (1987) Bucher (1986) Bucher (1986)
1986	Mean	24.3 40.8	38.3 45.6	

Table 53. Water temperatures and depths, at field camp site, head of Wood River (outlet of Lake Aleknagik), Bristol Bay, Alaska, 1986.

	Mean Water Temp. (°C)	Mean Water Depth (m)
5 24 5 25	6.5 5.5	- 0.61 - 0.30
5 26 5 27 5 28 5 29 5 30 5 31 5 1	5.5 5.5	- 0.30 - 0.30
28	6.0	- 0.30
5 29 5 30	5.5 5.0	- 0.30 - 0.30
31 1	4.5 4.5	- 0.30 - 0.25
2	5.0 4.0	- 0.25 0.30
5 3 5 4 5 5	6.0	-
2 3 4 5 5 6 7	5.0	0.51 0.54
8	4.8	0.65
9 10	4.8	0.67 0.68
11 12	5.1 5.0	0.72 0.79
13 14	4.9 5.0	0.84 0.88
15	5.3	0.91
16 17	5.4 5.8	0.94 0.97
5 18 5 19	5.0 4.9	0.98 0.98
20 21	4.9 4.9	0.98 0.99
5 22	4.9	1.00
24	5.4 5.1	1.02 1.05
25 26	4.9 4.9	1.06 1.06
27 28	5.4 5.0	1.01
29 30	5.5 6.0	0.98 0.93

⁻Continued-

Table 53. (Page 2 of 2)

)ate	Mean Water Temp. (°C)	Mean Water Depth (m)
1	$\frac{7.1}{}$	0.90
2 3	7.8	0.85
	8.9	0.82
4	7.3	0.80
5	6.5	0.78
6	6.3	0.74
7	7.5	0.72
8	8.3	0.69
' 9	8.0	0.66
' 10	8.8	0.64
' 11	9.8	0.62
' 12	10.3	0.59
13	10.3	0.56
' 14		
	9.9	0.51
15	8.0	0.46
loon	<u> </u>	0.57
lean	6.1	0.57

-90

Table 54. Water temperatures and depths at field camp site, head of Wood River (outlet of Lake Aleknagik), Bristol Bay, Alaska, 1975-1986.

		Water T	emperatur	e (°C)	Water D	epth (m)		
Sample Year Period	- N	Minimum	Maximum	Mean	Minimum	Maximum	Mean	References
1975 29 May-19 Ju 1976 9 June- 7 Au 1977 9 June- 8 Au 1978 28 May- 9 Au 1979 30 May- 2 Au 1980 30 May-15 Au 1981 27 May-13 Au 1982 27 May-10 Au 1983 28 May-26 Ju	igust igust igust igust igust igust igust ily	2.0 2.0 4.5 5.0 4.5 4.5 5.4 2.2	9.5 14.0 15.5 16.0 16.0 18.0 17.5 12.0	5.0 8.0 9.0 9.0 9.0 9.0 11.4 6.4 8.7	-0.24 0.24 - 0.37 0.33 0.34 0.03 0.46 0.46	0.57 1.07 0.98 1.46 1.65 1.21 1.62 1.19	0.37 0.57 1.52 0.82 0.93 1.07 0.55 1.17 0.90	Krasnowski (1976) Krasnowski (1977) Newcome (1978) Clark and Robertson (1980) Bucher (1980) Bucher (1981) Bucher (1982) Bucher (1984) Bucher (1987)
1984 22 May-27 Ju 1985 6 June- 8 Au 1986 23 May-17 Jul	igust Mean	4.4 2.2 —— 3.8 3.0	16.7 10.6 ————————————————————————————————————	10.8 6.3 — 8.4 6.1	-0.21 0.43 0.25	0.23 1.40 ————————————————————————————————————	0.01 0.99 —— 0.88 0.57	Bucher (1986) Bucher (1986)

Table 55. Sonar counts recorded from three 10 transducer arrays at the sockeye salmon smolt counting site on the Nuyakuk River, Bristol Bay, Alaska, 1986.

	T	ransducer Arra	y	
Date a	Inshore	Center	Offshore	Total
5 25 5 26	239 186	112 177	125 44	476 407
5 27	196	225	89	510
5 28 5 29	165 208	269 121	184 40	618 369
5 30	213	35	128	376
5 31	73	100	29	202
6 1 6 2	205 337	219 309	250 220	674
6 3	473	217	332	866 1,022
6 4	264	460	492	1,216
6 2 6 3 6 4 6 5 6 6 7 6 8	2,232	1,075	307	3,614
6 7	3,117 16,078	4,772 23,651	2,255 17,823	10,144 57,552
6 8	3,726	9,305	9,619	22,650
6 9	807	605	613	2,025
6 10 6 11	1,923 1,591	936 1,141	1,333 1,111	4,192 3,843
6 12	955	1,295	1,149	3,399
6 13	906	1,202	1,362	3,470
6 14 6 15	4,061 2,223	2,462 2,502	1,854 2,050	8,377 6,775
6 16	1,959	2,557	1,979	6,495
6 17	1,591	2,472	2,312	6,375
6 18 6 19	869 1,735	1,130 1,400	1,613 1,409	3,612 4,544
6 20	593	697	1,021	2,311
6 21	585	892	1,379	2,856
6 22 6 23	556 368	667 425	696 592	1,919
6 24	142	248	386	1,385 776
6 25	233	162	356	751
6 26 6 27	77 235	114 262	173 278	364 775
Total	49,121	62,216	53,603	164,940
Percent	29.78	37.72	32.50	

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 56. Daily number of sockeye salmon smolt migrating seaward in the Nuyakuk River, Bristol Bay, Alaska, 1986, as estimated with a sonar unit.

		Age I			Age II			All Ages		
Date ª	Number	Percent	Cumulative Total	Number	Percent	Cumulative Total	Daily Total	Cumulative Total		
5 24	65,108	92.92	65,108	4,958	7.08	4,958	70,066	70,066		
5 25	28,648	99.25	28,648	216	0.75	216	28,864	28,864		
5 26	23,699	99.25	52,347	179	0.75	395	23,878	52,742		
5 27	32,513	99.25	84,860	245	0.75	640	32,758	85,500		
5 28	45,240	99.25	130,100	341	0.75	981	45,581	131,081		
5 29	19,391	99.25	149,491	146	0.75	1,127	19,537	150,618		
5 30	22,099	99.25	171,590	167	0.75	1,294	22,266	172,884		
5 31	12,899	99.25	184,489	97	0.75	1,391	12,996	185,880		
6 1	49,266	99.25	233,755	372	0.75	1,763	49,638	235,518		
6 2	56,521	99.25	290,266	427	0.75	2,190	56,948	292,466		
6 3	61,663	99.25	351,939	465	0.75	2,655	62,128	354,594		
6 4	88,806	99.25	440,745	671	0.75	3,326	89,477	444,071		
6 5	152,027	95.29	592,772	7514	4.70	10,840	159,541	603,612		
6 6	629,725	97.86	1,222,497	13,770	2.14	24,610	643,495	1,247,107		
6 7	4,293,284	99.82	5,515,781	7,741	0.18	32,351	4,301,025	5,548,132		
6 8	1,617,555	100.00	7,133,336	0		32,351	1,617,555	7,165,687		
6 9	118,835	100.00	7,252,171	0		32,351	118,835	7,284,522		
6 10	239,676	98.75	7,491,847	3,033	1.25	35,384	242,709	7,527,231		
6 11	220,591	98.75	7,712,438	2,792	1.25	38,176	223,383	7,750,614		
6 12	198,118	94.98	7,910,556	10,471	5.02	48,647	208,589	7,959,203		
6 13	211,881	94.98	8,122,437	11,198	5.02	59,845	223,079	8,182,282		
6 14	434,079	96.05	8,556,516	17,851	3.95	77,696	451,930	8,634,212		
6 15	420,482	97.61	8,976,998	10,295	2.39	87,991	430,777	9,064,989		
6 16	411,343	97.61	9,388,341	10,071	2.39	98,062	421,414	9,486,403		
6 17	397,491	92.72	9,785,832	31,209	7.28	129,271	428,700	9,915,103		
6 18	232,878	92.72	10,018,710	18,284	7.28	147,555	251,162	10,166,265		

Table 56. (Page 2 of 2)

		Age I			Age II	All Ages			
Date	a Number	Cumulative Percent Total		Number	Percent	Cumulative Total	Daily Total	Cumulative Total	
6 19	266,497	96.05	10,285,207	10,959	3.95	158,514	277,456	10,443,721	
6 20	158,814	97.88	10,444,021	3,439	2.12	161,953	162,253	10,605,974	
6 21	207,681	98.16	10,651,702	3,892	1.84	165,845	211,573	10,817,547	
6 22	128,067	98.97	10,779,769	1,332	1.03	167,177	129,399	10,946,946	
6 23	92,820	98.19	10,872,589	1,711	1.81	168,888	94,531	11,041,477	
6 24	55,964	98.19	10,928,553	1,031	1.81	169,919	56,995	11,098,472	
6 25	54,471	98.19	10,983,024	1,004	1.81	170,923	55,475	11,153,947	
6 26	27,830	98.19	11,010,854	513	1.81	171,436	28,343	11,182,290	
6 27	52,899	98.19	11,063,753	975	1.81	172,411	53,874	11,236,164	
Total	11,063,753	98.47		172,411	1.53	1	1,236,164		

 $^{^{\}mathrm{a}}$ Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 57. Adjustment factors used to expand sonar counts into estimated numbers of sockeye salmon smolts, Nuyakuk River, Bristol Bay, Alaska, 1986.

Oate ^a	Mean Weight of Smolt (g)	Smolt per Count
5 25	no sample	8.8
5 26	no sample	8.8
5 27	no sample	8.8
5 28	4.7	8.8
5 29 5 30	no sample	8.8 8.8
31	4.7 4.7	8.8
5 1	no sample	8.8
2	no sample	8.8
5 3	4.7	8.8
5 4	4.7	8.8
5 4 5 5 5 6 5 7	4.8	8.6
6 7	4.7	8.9
7	4.2	9.8
8 9	4.6 4.6	9.1 9.1
		9.1
10 11	no sample 4.5	9.2
12	4.8	8.7
13	4.8	8.7
14	4.5	9.2
15	4.5	9.3
16	4.5	9.3
17	4.5	9.2
18 19	4.5	9.2
19 20	4.3	9.7
	4.2 4.2	9.8 9.9
21 22	4.2	10.0
	4.3	9.7
23 24	4.3	9.7
25	4.3	9.7
26 27	4.3	9.7
27	no sample	9.7

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 58. Sockeye salmon spawning escapements, total number of smolt produced by age class (percent of total smolt production comprised by each age class indicated within parentheses), and number of smolt produced per spawner for 1980-1984 brood years, Nuyakuk River, Bristol Bay, Alaska.

	Total	Numbe			
Brood Year		Age I	Age II	Total	Per Spawne
1980	3,026,568	_	1,259,339	-	_
1981	834,204	28,875,158 (99)	89,911 (1)	28,965,069	34.72
1982	537,864	6,293,644 (89)	769,319 (11)	7,062,963	13.13
1983	318,606	22,596,725	172,411	22,769,136	71.46
1984	472,596	11,063,753	•	• •	

Table 59. Sockeye salmon spawning escapements, smolt production, adult returns, and smolt survival (number of adults produced per smolt) for 1979-1984 brood years, Nuyakuk River, Bristol Bay, Alaska.

		Age I			Age II			
	Total ^a Spawning Escapement	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	Number of Smolt	Adult ^a Returns	Adult Returns per Smolt	
1980 1981 1982 1983 1984	3,026,568 834,204 537,864 318,606 472,596	28,875,158 6,293,644 22,596,725 11,063,753	643,982 2,014,591 99,735 0	0.07 0.02 b 0.00 b	1,259,339 89,911 769,319 172,411	212,695 5,608 521	0.17 0.06 b 0.00 b	

Includes interception estimates, Yuen and Nelson (1987)
 Future adult returns will increase these values.

Table 60. Mean fork length and weight of sockeye salmon smolt captured in fyke nets, Nuyakuk River, Bristol Bay, Alaska, 1986.

			Age I					Age II		
Date ^a	Mean Length (mm)	Std. Error	Mean Weight (g)	Std. Error	Sample Size	Mean Length (mm)	Std. Error	Mean Weight (g)	Std Error	Sample Size
5 28 5 30 5 31 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	76 81 75 72 85 84 82 86 81 82 85 84 81 80 83 81 80 82 81	22.4 21.4 12.0 20.3 12.9 16.9 12.4 14.1 13.5 23.5 15.7 14.1 13.3 16.2 17.6 12.4 14.9 13.0 13.5 15.4 9.9 9.4 11.4	4.5 5.6 5.6 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	3.96 3.51 2.58 3.98 3.18 2.58 2.19 3.13 2.50 2.70 2.60 2.42 2.80 1.91 2.19 2.19 2.19 2.19 2.19 2.19 2.19	26 6 5 100 8 80 80 80 78 79 157 61 75 83 75 83 75 83 75 83 75 83 84 85 75 85 77 85 87 87 88 88 89 80 80 80 80 80 80 80 80 80 80 80 80 80	93 90 91 92 91 93 90 88 90 90 92 96	2.2 10.8 4.9 7.3 1.9 7.0 6.4 2.9 10.7 7.6 1.5 1.2 5.4	6.4 5.7 6.3 6.5 6.5 6.5 6.5 6.5 6.7	.7! 1.9: 1.28 1.4: .3: 1.5: .5: 2.4! 1.6: .8: .2:	1 5 3 4 1 6 9 3 7 7 6 15 1 5 1 2 2 6 3 4 2 3 3 0
Totals					1,762					78
Means	81		4.7			91		6.3		

^a Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 61. Mean fork length and estimated weight, of sockeye salmon smolt captured in fyke nets, Nuyakuk River, Bristol Bay, Alaska, 1986.

		E	stimated	Age I	Estimated Age				
Date ^a	Mean Length (mm)		stimated Weight (g)	Sample Size	Mean Length (mm)		stimated Weight (g)	Sample Size	
6 4 b 6 5 6 6 7 6 13 6 14 6 16 6 18 6 19 6 20 6 21 6 22	83 85 85 80 83 83 80 80 80 79	18.5 12.0 17.3 16.9 16.1 13.6 13.5 15.1 17.9 13.8 15.3 12.4	4.9 5.3 5.2 4.3 5.0 4.9 4.4 4.4 4.4 4.2	279 84 188 199 171 101 118 190 190 98 97	93 94 92 94 93 93 95 95 92 93	3.0 3.2 2.9 4.1 2.7 1.6 3.4 .6	6.6 6.7 6.8 6.3 6.5 6.5 6.6 9 7.0 6.5	21 16 12 1 16 9 1 10 11 2 3	
Totals				1,819				103	
Means	81		4.6		93		6.6		

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

b Length-weight parameters by age group and discriminating length used to separate ages for 4 June through 22 June were; age I a= -11.56 b= 2.97 r^2 = .78 n= 1435 age II a= -11.12 b= 2.87 r^2 = .82 n= 70 discriminating length = 91.5

Table 62. Mean fork length and weight by age class, for sockeye salmon smolt, Nuyakuk River, Bristol Bay, Alaska, 1978, 1982-1986.

				A	ge I	Ag	e II	
Year Migra		Sample Dates	Sample Size	Mean Length (mm)	Mean Weight (g)	Mean Length (mm)	Mea Weig (g)	ght
1978 1982 1983 1984 1985	15 Ju 27 Ma 27 Ma	19 June une- 9 July uy-30 June uy-26 June uy-28 June	350 208 1,847 980 1,479	71 76 75 81 85	4.3 3.9 4.3 4.9 5.5	85 96 91 93 89	6.8 6.6 7.3	Huttunen (1980) Minard (1984) Minard and Frederickson (1987) Minard and Frederickson (1986) Minard and Brandt (1986)
			Mean	78	4.6	91	6.6	
1986	24 Ma	y-27 June	1,840	81	4.7	91	6.3	

Table 63. Mean fork length and weight of chinook salmon smolt captured in fyke nets, Nuyakuk River, Bristol Bay, Alaska, 1986.

	Age II									
Date ^a	Mean Length (mm)	Std. Error	Mean Weight (g)	Weight Std.						
5 29 5 30 5 31 6 2 6 3 6 5	83 93 108 95 95	2.6 16.1	4.9 6.9 11.9 8.6 6.9 9.1	.56 5.35	1 4 2 1 1					
6 18 6 20 6 21 6 23 6 24 6 25 6 26	82 90 89 85 91 87 91	1.2 10.7 13.2 9.5 13.6 24.2	4.7 6.7 6.5 5.9 7.1 6.9 6.8	.48 2.45 3.04 2.23 3.47 6.63	1 10 7 8 4 5					
Totals					48					
Means	91		7.1							

Sample day began at 1200 hrs and ended at 1159 hrs the next calendar day.

Table 64. Climatological and hydrological observations made at sockeye salmon smolt counting site, Nuyakuk River, Bristol Bay, Alaska, 1986.

Date	Cloud	l Cover ª		Velocity n/hr)	Air Te	emp (°C)	Water T	emp (°C)		Precipitation (mm)	Water ^l Gauge (m)
	0800 hr	2000 hr	0800 hr	2000 hr	0800 hr	2000 hr	0800 hr	2000 hr	Clarity		
5 25	1	1	0-5 NW	0-5 NW	, -	10.0	-	7.0	clear	0.00	4.01
5 26	1	1	0-5 N	0-5 N	-	13.3	4.5	6.0	clear	0.00	4.07
5 27	1	1	5 N	0-5 N	8.8	11.1	5.0	6.0	clear	0.00	4.13
5 28	1	1	0-5 N	0-5 VAR	10.2	15.5	6.0	7.0	clear	0.00	4.14
5 29	1	3	0-5 N	0-5 VAR	8.8	11.6	6.5	5.5	clear	1.27	4.15
5 30	3		0-5 E	15-20 SE	7.8	11.7	7.0	5.5	clear	2.54	4.19
5 31	3	3	5 E	5-15 E	7.8	10.6	7.0	6.0	clear	2.54	4.22
6 1	4	4	0-5 E	0-5 V AR	6.5	8.9	6.0	5.5	clear	8.13	4.25
6 2	2	4	0-5 NE	20-25 SE	5.6	6.1	6.0	5.0	clear	1.27	4.35
6 3	4	4	5-15 E	20-30 -	6.0	6.7	6.0	5.0	clear	0.51	4.38
6 4	4	4	5-15 E	0-5 SE	5.6	7.2	6.0	5.0	-	12.19	4.51
6 5	4	3	0-5 NE	0-5 SE	5.6	8.3	5.5	5.0	_	2.03	4.70
6 6	2	3	5-10 NE	5-10 NE	6.0	11.0	5.5	5.0	clear	0.00	4.84
6 7	2	3	calm	0-5 N	6.7	12.0	5.2	5.5	clear	0.00	4.92
6 8	2	2	calm	5-10 E	14.5	11.0	5.0	7.0	clear	0.00	4.99
6 9	4	2	calm	calm	5.8	15.0	5.0	6.5	turbid	0.00	5.04
6 10	4	2	calm	5 NE	5.0	18.0	5.1	6.5	turbid	0.00	5.11
6 11	1	4	0-5 NE	10-20 E	7.0	9.0	5.5	6.0	turbid	trace	5.15
6 12	4	3	calm	5-10 E	5.0	10.0	5.0	6.0	turbid	0.64	5.19
6 13	4	2	0-5 N	0-5 E	9.5	18.0	5.6	7.0	turbid	0.00	5.28
6 14	3	2	calm	0-5 N	20.0	24.0	7.2	8.0	turbid	0.00	5.34
6 15	1	1	calm	0-5 N	20.0	24.0	7.0	9.0	turbid	0.00	5.38
6 16	1	2	calm	calm	22.0	31.0	8.2	10.0	clear	0.00	5.42
6 17	2	3	0-5 NE	calm	11.0	19.0	8.2	8.2	clear	0.00	5.47
6 18	4	4	0-5 E	0-5 E	9.0	11.0	8.0	8.5	turbid	0.00	5.54

Table 64. (Page 2 of 2)

Date	Cloud Cover ^a		Wind Velocity (km/hr)		Air Temp (°C)		Water Temp (°C)				Water ^b
	0800 hr	2000 hr	0800 hr	2000 hr	0800 hr	2000 hr	0800 hr	2000 hr	Clarity	Precipitation (mm)	Gauge (m)
6 19	4	2	0-5 NE	0-5 NE	7.0	7.5	7.0	16.0	turbid	trace	5.61
6 20	2	2	5-10 E	5-20 SE	12.0	12.0	8.0	6.8	turbid	0.00	5.61
6 21	4	3	10-20 S	5-10 SE	10.0	11.0	7.0	7.5	clear	trace	5.65
6 22	4	3	0-5 SE	calm	9.0	16.0	7.0	7.8	clear	7.62	5.67
6 23	4	4	5-10 S	5-10 SE	8.0	8.8	7.0	7.2	clear	trace	5.69
6 24	4	4	5-10 S	0-5 SE	11.5	10.0	7.5	7.2	clear	5.08	5.70
6 25	4	4	5-10 SE	0-5 SE	6.5	8.0	7.0	7.2	clear	7.62	5.71
6 26	4	4	calm	0-5 SE	8.0	11.0	7.5	8.0	clear	5.08	5.71
6 27	3	3	0-5 NE	5-15 SE	9.0	8.0	8.0	12.0	clear	2.54	5.68

^{1 =} cloud cover not more than 1/10 2 = cloud cover not more than 1/2 3 = cloud cover more than 1/2 4 = completely overcast

^{5 =} fog

Water Gauge = depth over inshore array

Escause the Alaska Department of Fish and Game received taderal funding, all of its public programs and activities are operated free from discrimination on the basis of race, cc.or, national origin, age, or handicap. Any person who believes he or she has been discriminated against should write to:

O.E.O. U.S. Department of the Interior Washington, D.C. 20240